Multilevel Stein variational gradient descent is a method for particle-based variational inference that leverages hierarchies of approximations of target distributions with varying costs and fidelity to computationally speed up inference. This work provides a cost complexity analysis of multilevel Stein variational gradient descent that applies under milder conditions than previous results, especially in discrete-in-time regimes and beyond the limited settings where Stein variational gradient descent achieves exponentially fast convergence. The analysis shows that the convergence rate of Stein variational gradient descent enters only as a constant factor for the cost complexity of the multilevel version, which means that the costs of the multilevel version scale independently of the convergence rate of Stein variational gradient descent on a single level. Numerical experiments with Bayesian inverse problems of inferring discretized basal sliding coefficient fields of the Arolla glacier ice demonstrate that multilevel Stein variational gradient descent achieves orders of magnitude speedups compared to its single-level version.
翻译:多级斯坦因梯度梯度下降是一种基于粒子的变异推论方法,它利用了不同成本和真实性不同目标分布近似值的等级来加快推算速度。这项工作对在比以往更温和的条件下适用的多级斯坦因梯度梯度下降进行了成本复杂分析,特别是在离散时间制度和超出有限环境的情况下,斯坦因变异梯度下降达到指数性快速趋同。分析表明,斯坦因变异梯度下降的趋同率只是多级版本成本复杂性的一个不变因素,这意味着,独立于单级斯坦因变异梯度下降的趋同率,多级版本规模成本表的成本。与巴伊斯人对亚罗拉冰川离散的柱形滑动系数场的反常态实验表明,与单级版本相比,多级斯坦变梯度梯度梯度下降率达到数量级加速速度的顺序。