We study the problem of allocating indivisible goods among $n$ agents with the objective of maximizing Nash social welfare (NSW). This welfare function is defined as the geometric mean of the agents' valuations and, hence, it strikes a balance between the extremes of social welfare (arithmetic mean) and egalitarian welfare (max-min value). Nash social welfare has been extensively studied in recent years for various valuation classes. In particular, a notable negative result is known when the agents' valuations are complement-free and are specified via value queries: for XOS valuations, one necessarily requires exponentially many value queries to find any sublinear (in $n$) approximation for NSW. Indeed, this lower bound implies that stronger query models are needed for finding better approximations. Towards this, we utilize demand oracles and XOS oracles; both of these query models are standard and have been used in prior work on social welfare maximization with XOS valuations. We develop the first sublinear approximation algorithm for maximizing Nash social welfare under XOS valuations, specified via demand and XOS oracles. Hence, this work breaks the $O(n)$-approximation barrier for NSW maximization under XOS valuations. We obtain this result by developing a novel connection between NSW and social welfare under a capped version of the agents' valuations. In addition to this insight, which might be of independent interest, this work relies on an intricate combination of multiple technical ideas, including the use of repeated matchings and the discrete moving knife method. In addition, we partially complement the algorithmic result by showing that, under XOS valuations, an exponential number of demand and XOS queries are necessarily required to approximate NSW within a factor of $\left(1 - \frac{1}{e}\right)$.
翻译:我们研究了在美元代理商之间分配不可分割货物的问题,目标是最大限度地增加纳什社会福利(新南威尔士)。这一福利功能的定义是代理人估值的几何平均值,从而在社会福利(最高平均值)和平等福利(最大值)的极端(最大值)之间取得平衡。近年来,对各种估值类别都对纳什社会福利进行了广泛研究。特别是,当代理人的估值是无补充的,并且通过价值查询加以具体说明时,人们就会知道一个显著的负面结果:对于XOS估值,一个人必然需要大量的价值查询,才能找到新南威尔士的任何亚线(以美元为单位)的反复近似。事实上,这一下限意味着需要更强的查询模型来寻找更好的近似。为此,我们使用了需求或触地差和XOS(最大值)的极端值估值;这两个查询模型都是标准的,在以前关于社会福利最大化的工作中使用了XOS(最高值)的混合值组合。我们开发了第一个在XOS估值中,通过需求或新南威尔士(最低值)的数值估值结果,在X公司估值中可能打破了在这种新水平下进行的新升级的增值(最低值)工作的结果。