Recent advances in machine learning have led to increased deployment of black-box classifiers across a wide variety of applications. In many such situations there is a critical need to both reliably assess the performance of these pre-trained models and to perform this assessment in a label-efficient manner (given that labels may be scarce and costly to collect). In this paper, we introduce an active Bayesian approach for assessment of classifier performance to satisfy the desiderata of both reliability and label-efficiency. We begin by developing inference strategies to quantify uncertainty for common assessment metrics such as accuracy, misclassification cost, and calibration error. We then propose a general framework for active Bayesian assessment using inferred uncertainty to guide efficient selection of instances for labeling, enabling better performance assessment with fewer labels. We demonstrate significant gains from our proposed active Bayesian approach via a series of systematic empirical experiments assessing the performance of modern neural classifiers (e.g., ResNet and BERT) on several standard image and text classification datasets.


翻译:最近机器学习的进展导致在各种各样的应用中更多地部署黑盒分类器,在许多这类情况下,迫切需要同时可靠地评估这些经过预先训练的模式的性能,并以标签效率的方式进行这一评估(因为标签可能稀缺,收集成本较高)。在本文件中,我们采用了一种积极的贝叶斯方法来评估分类器的性能,以满足可靠性和标签效率的偏差。我们首先制定推论战略,对诸如准确性、分类错误成本和校准错误等共同评估指标的不确定性进行量化。然后,我们提出一个积极的贝叶斯评估总框架,利用推断的不确定性来指导有效选择标签的事例,以便能够用较少的标签进行更好的业绩评估。我们通过对若干标准图像和文本分类数据集的现代神经分类器(例如ResNet和BERT)的性能进行一系列系统的经验性实验,从我们拟议的海湾积极方法中显示出显著的收益。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2020年9月29日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员