Approximate Computing (AC) has emerged as a promising technique for achieving energy-efficient architectures and is expected to become an effective technique for reducing the electricity cost for cloud service providers (CSP). However, the potential misuse of AC has not received adequate attention, which is a coming crisis behind the blueprint of AC. Driven by the pursuit of illegal financial profits, untrusted CSPs may deploy low-cost AC devices and deceive clients by presenting AC services as promised accurate computing products, while falsely claiming AC outputs as accurate results. This misuse of AC will cause both financial loss and computing degradation to cloud clients. In this paper, we define this malicious attack as DisHonest Approximate Computing (DHAC) and analyze the technical challenges faced by clients in detecting such attacks. To address this issue, we propose two golden model free detection methods: Residual Class Check (RCC) and Forward-Backward Check (FBC). RCC provides clients a low-cost approach to infer the residual class to which a legitimate accurate output should belong. By comparing the residual class of the returned result, clients can determine whether a computing service contains any AC elements. FBC detects potential DHAC by computing an invertible check branch using the intermediate values of the program. It compares the values before entering and after returning from the check branch to identify any discrepancies. Both RCC and FBC can be executed concurrently with real computing tasks, enabling real-time DHAC detection with current inputs. Our experimental results show that both RCC and FBC can detect over 96%-99% of DHAC cases without misjudging any legitimate accurate results.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员