We present GPS++, a hybrid Message Passing Neural Network / Graph Transformer model for molecular property prediction. Our model integrates a well-tuned local message passing component and biased global attention with other key ideas from prior literature to achieve state-of-the-art results on large-scale molecular dataset PCQM4Mv2. Through a thorough ablation study we highlight the impact of individual components and, contrary to expectations set by recent trends, find that nearly all of the model's performance can be maintained without any use of global self-attention. We also show that our approach is significantly more accurate than prior art when 3D positional information is not available.
翻译:我们提出GPS++,这是一个混合信息传递神经网络/图形变异器模型,用于分子属性预测。我们的模型结合了当地信息传递元件和有偏见的全球关注与以前文献中的其他关键想法,以实现大规模分子数据集PCQM4Mv2的最新结果。 通过全面消缩研究,我们强调个别组成部分的影响,并与最近趋势的预期相反,发现几乎所有模型的性能都能够在不使用全球自我意识的情况下得以保持。我们还表明,在缺乏3D定位信息的情况下,我们的方法比以前的方法要准确得多。