We present a methodology to automatically obtain Pose Space Deformation (PSD) basis for rigged garments through deep learning. Classical approaches rely on Physically Based Simulations (PBS) to animate clothes. These are general solutions that, given a sufficiently fine-grained discretization of space and time, can achieve highly realistic results. However, they are computationally expensive and any scene modification prompts the need of re-simulation. Linear Blend Skinning (LBS) with PSD offers a lightweight alternative to PBS, though, it needs huge volumes of data to learn proper PSD. We propose using deep learning, formulated as an implicit PBS, to unsupervisedly learn realistic cloth Pose Space Deformations in a constrained scenario: dressed humans. Furthermore, we show it is possible to train these models in an amount of time comparable to a PBS of a few sequences. To the best of our knowledge, we are the first to propose a neural simulator for cloth. While deep-based approaches in the domain are becoming a trend, these are data-hungry models. Moreover, authors often propose complex formulations to better learn wrinkles from PBS data. Dependency from data makes these solutions scalability lower, while their formulation hinders its applicability and compatibility. By proposing an unsupervised methodology to learn PSD for LBS models (3D animation standard), we overcome both of these drawbacks. Results obtained show cloth-consistency in the animated garments and meaningful pose-dependant folds and wrinkles.


翻译:我们提出一种方法,通过深层学习,自动获得装饰服装的制片空间变形(PSD)基础。古典方法依赖于基于物理的模拟(PBS)和动画衣。这些是一般的解决方案,由于空间和时间的细微分解作用,可以取得非常现实的结果。然而,这些解决方案在计算上成本很高,任何场景变换都促使需要重新模拟。与私营部门司的线性皮肤(LBS)为PBS提供了一种轻量级的替代品。虽然它需要大量的数据来学习适当的私营部门发展。我们建议使用深层次的学习,以隐含的 PBS 模式的形式进行设计,在有限的情景下,以不超过的方式学习现实的布局变形空间变形。此外,我们展示这些模型的时间可以与几个序列的PBS相仿。我们最了解的是,我们首先提出一个线性造型的线性造型模拟布料。虽然深基方法正在成为一种趋势,但这些都是不易变式的模型。此外,这些模型往往会用一种不甚精确的易理解的布局格式方法来绘制。

0
下载
关闭预览

相关内容

基于位置的应用。通常与智能手机(移动终端)的应用相结合,如签到,查找附近的好友和服务等。
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
28+阅读 · 2020年5月19日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人驾驶仿真软件
智能交通技术
21+阅读 · 2019年5月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
已删除
将门创投
9+阅读 · 2017年10月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Learning to Importance Sample in Primary Sample Space
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人驾驶仿真软件
智能交通技术
21+阅读 · 2019年5月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
已删除
将门创投
9+阅读 · 2017年10月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员