Physically plausible fluid simulations play an important role in modern computer graphics and engineering. However, in order to achieve real-time performance, computational speed needs to be traded-off with physical accuracy. Surrogate fluid models based on neural networks have the potential to achieve both, fast fluid simulations and high physical accuracy. However, these approaches rely on massive amounts of training data, require complex pipelines for training and inference or do not generalize to new fluid domains. In this work, we present significant extensions to a recently proposed deep learning framework, which addresses the aforementioned challenges in 2D. We go from 2D to 3D and propose an efficient architecture to cope with the high demands of 3D grids in terms of memory and computational complexity. Furthermore, we condition the neural fluid model on additional information about the fluid's viscosity and density which allows simulating laminar as well as turbulent flows based on the same surrogate model. Our method allows to train fluid models without requiring fluid simulation data beforehand. Inference is fast and simple, as the fluid model directly maps a fluid state and boundary conditions at a moment t to a subsequent fluid state at t+dt. We obtain real-time fluid simulations on a 128x64x64 grid that include various fluid phenomena such as the Magnus effect or Karman vortex streets and generalize to domain geometries not considered during training. Our method indicates strong improvements in terms of accuracy, speed and generalization capabilities over current 3D NN-based fluid models.
翻译:在现代计算机图形和工程中,物理上看似可信的流体模拟在现代计算机图形和工程中起着重要作用。然而,为了实现实时性能,计算速度需要以物理精确度进行交易。基于神经网络的代金流体模型具有实现快速流体模拟和高物理精确度的潜力。然而,这些方法依赖大量的培训数据,需要复杂的管道用于培训和推断,或者不推广到新的流体领域。在这项工作中,我们为最近提议的深层次学习框架提供了重要的扩展,该框架针对了2D中的上述挑战。我们从2D到3D,提出一个高效的架构,以应对3D电网在记忆和计算复杂性方面的高准确性需求。此外,我们将神经流体模型以关于流体的粘度和密度的额外信息为条件进行条件,以便根据同一超导体模型进行模拟和波动流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流动体流动体运动。我们的方法允许在先要求进行前模拟模拟数据模拟数据模拟数据模拟。基于的推论的快速和直径变体流体流体变体变体变体流体流体变体流体流体流体流体变体变体变体变体变体变体变体流体流体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变