Physically plausible fluid simulations play an important role in modern computer graphics and engineering. However, in order to achieve real-time performance, computational speed needs to be traded-off with physical accuracy. Surrogate fluid models based on neural networks have the potential to achieve both, fast fluid simulations and high physical accuracy. However, these approaches rely on massive amounts of training data, require complex pipelines for training and inference or do not generalize to new fluid domains. In this work, we present significant extensions to a recently proposed deep learning framework, which addresses the aforementioned challenges in 2D. We go from 2D to 3D and propose an efficient architecture to cope with the high demands of 3D grids in terms of memory and computational complexity. Furthermore, we condition the neural fluid model on additional information about the fluid's viscosity and density which allows simulating laminar as well as turbulent flows based on the same surrogate model. Our method allows to train fluid models without requiring fluid simulation data beforehand. Inference is fast and simple, as the fluid model directly maps a fluid state and boundary conditions at a moment t to a subsequent fluid state at t+dt. We obtain real-time fluid simulations on a 128x64x64 grid that include various fluid phenomena such as the Magnus effect or Karman vortex streets and generalize to domain geometries not considered during training. Our method indicates strong improvements in terms of accuracy, speed and generalization capabilities over current 3D NN-based fluid models.


翻译:在现代计算机图形和工程中,物理上看似可信的流体模拟在现代计算机图形和工程中起着重要作用。然而,为了实现实时性能,计算速度需要以物理精确度进行交易。基于神经网络的代金流体模型具有实现快速流体模拟和高物理精确度的潜力。然而,这些方法依赖大量的培训数据,需要复杂的管道用于培训和推断,或者不推广到新的流体领域。在这项工作中,我们为最近提议的深层次学习框架提供了重要的扩展,该框架针对了2D中的上述挑战。我们从2D到3D,提出一个高效的架构,以应对3D电网在记忆和计算复杂性方面的高准确性需求。此外,我们将神经流体模型以关于流体的粘度和密度的额外信息为条件进行条件,以便根据同一超导体模型进行模拟和波动流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流体流动体流动体运动。我们的方法允许在先要求进行前模拟模拟数据模拟数据模拟数据模拟。基于的推论的快速和直径变体流体流体变体变体变体流体流体变体流体流体流体流体变体变体变体变体变体变体变体流体流体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变体变

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
175+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员