The Scott-Vogelius element is a popular finite element for the discretization of the Stokes equations which enjoys inf-sup stability and gives divergence-free velocity approximation. However, it is well known that the convergence rates for the discrete pressure deteriorate in the presence of certain $critical$ $vertices$ in a triangulation of the domain. Modifications of the Scott-Vogelius element such as the recently introduced pressure-wired Stokes element also suffer from this effect. In this paper we introduce a simple modification strategy for these pressure spaces that preserves the inf-sup stability while the pressure converges at an optimal rate.
翻译:暂无翻译