Algorithmic stablecoins (AS) are one special type of stablecoins that are not backed by any asset (equiv. without collateral). They stand to revolutionize the way a sovereign fiat operates. As implemented, these coins are poorly stabilized in most cases, easily deviating from the price target or even falling into a catastrophic collapse (a.k.a. Death spiral), and are as a result dismissed as a Ponzi scheme. However, is this the whole picture? In this paper, we try to reveal the truth and clarify such a deceptive concept. We find that Ponzi is basically a financial protocol that pays existing investors with funds collected from new ones. Running a Ponzi, however, does not necessarily imply that any participant is in any sense losing out, as long as the game can be perpetually rolled over. Economists call such realization as a \textit{rational Ponzi game}. We thereby propose a rational model in the context of AS and draw its holding conditions. We apply the model to examine: \textit{whether or not the algorithmic stablecoin is a rational Ponzi game.} Accordingly, we discuss two types of algorithmic stablecoins (\text{Rebase} \& \text{Seigniorage shares}) and dig into the historical market performance of two impactful projects (\text{Ampleforth} \& \text{TerraUSD}, respectively) to demonstrate the effectiveness of our model.


翻译:算法稳定币(AS)是稳定币的一种特殊类型,它们没有任何资产支持(等效于没有抵押品)。它们有可能彻底改变一个主权货币的运作方式。然而,在大多数情况下,这些币的价格稳定性较差,容易偏离价格目标甚至陷入灾难性崩溃(也称为“死亡螺旋”),因此被视为庞氏骗局。然而,这是否是完整的图片呢?在本文中,我们试图揭示真相,澄清这种具有欺骗性的概念。我们发现,庞氏模型基本上是一种财务协议,通过新投资者的资金支付现有投资者。然而,运行庞氏并不一定意味着任何参与者在任何意义上都会损失,只要这个游戏可以永久地延续下去。经济学家称这种实现方式为“理性庞氏游戏”。因此,我们在AS的背景下提出了一个理性模型,并绘制其持有条件。我们将该模型应用于检查:\textit{算法稳定币是否是理性庞氏游戏。} 因此,我们讨论两种类型的算法稳定币(\text{重新基准} & \text{信用股份}),并深入分析了两个具有影响力的项目(分别是\text{Ampleforth}和\text{TerraUSD}),以证明我们模型的有效性。

0
下载
关闭预览

相关内容

在数学和计算机科学之中,算法(Algorithm)为一个计算的具体步骤,常用于计算、数据处理和自动推理。精确而言,算法是一个表示为有限长列表的有效方法。算法应包含清晰定义的指令用于计算函数。 来自维基百科: 算法
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
14+阅读 · 2021年11月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员