This article proposes new multiplicative updates for nonnegative matrix factorization (NMF) with the $\beta$-divergence objective function. Our new updates are derived from a joint majorization-minimization (MM) scheme, in which an auxiliary function (a tight upper bound of the objective function) is built for the two factors jointly and minimized at each iteration. This is in contrast with the classic approach in which the factors are optimized alternately and a MM scheme is applied to each factor individually. Like the classic approach, our joint MM algorithm also results in multiplicative updates that are simple to implement. They however yield a significant drop of computation time (for equally good solutions), in particular for some $\beta$-divergences of important applicative interest, such as the squared Euclidean distance and the Kullback-Leibler or Itakura-Saito divergences. We report experimental results using diverse datasets: face images, audio spectrograms, hyperspectral data and song play counts. Depending on the value of $\beta$ and on the dataset, our joint MM approach yields a CPU time reduction of about $10\%$ to $78\%$ in comparison to the classic alternating scheme.
翻译:本条提议对非负矩阵因子化( NMF) 进行新的倍增更新, 包括 $\ beeta$- diggence 客观功能。 我们的新更新来自于一个联合主要- 最小化( MM) 方案, 即为两个因素联合构建一个辅助函数( 目标函数的紧紧上层) 并在每次迭代中最小化。 这与各种因素交替优化和对每个因素分别应用 MM 方案的经典方法不同。 和经典方法一样, 我们的 MM 联合算法也导致多倍增更新, 并且执行起来非常简单。 但是, 它们的计算时间会大幅下降( 对于同样好的解决方案 ), 特别是对于某些具有重要适应性利益的 $\ beta$ 的辅助函数( 目标函数的紧上层), 例如平方的 Eucloidean 距离和 Kullback- Leperr 或 Itakura- Saito 差异。 我们用不同的数据集报告实验结果: 脸图像、 声谱、 超光谱数据和歌曲播放计。 取决于 $\\\betax$ a leax$ 和 las lax lax vial 方法的数值, lax vial 10 vial vial violal 方法, violal violal set des 10 am am am am am am am am 。