Automatic music generation has become an epicenter research topic for many scientists in artificial intelligence, who are also interested in the music industry. Being a balanced combination of math and art, music in collaboration with A.I. can simplify the generation process for new musical pieces, and ease the interpretation of it to a tangible level. On the other hand, the artistic nature of music and its mingling with the senses and feelings of the composer makes the artificial generation and mathematical modeling of it infeasible. In fact, there are no clear evaluation measures that can combine the objective music grammar and structure with the subjective audience satisfaction goal. Also, original music contains different elements that it is inevitable to put together. Therefore, in this paper, a method based on a genetic multi-objective evolutionary optimization algorithm for the generation of polyphonic music (melody with rhythm and harmony or appropriate chords) is introduced in which three specific goals determine the qualifications of the music generated. One of the goals is the rules and regulations of music, which, along with the other two goals, including the scores of music experts and ordinary listeners, fits the cycle of evolution to get the most optimal response. The scoring of experts and listeners separately is modeled using a Bi-LSTM neural network and has been incorporated in the fitness function of the algorithm. The results show that the proposed method is able to generate difficult and pleasant pieces with desired styles and lengths, along with harmonic sounds that follow the grammar while attracting the listener, at the same time.
翻译:自动音乐的产生已成为许多人工智能科学家研究的一个核心课题,他们也对音乐产业感兴趣。作为数学和艺术的平衡组合,音乐与A.I.合作,音乐可以简化新音乐片段的产生过程,并使对它的解释容易到有形的地步。另一方面,音乐的艺术性质及其与作曲家感知和情感的混合使人造和数学模型不可行。事实上,没有明确的评估措施可以将客观的音乐语法和结构与主观观众满意度目标结合起来。此外,原音乐包含各种不可避免的元素。因此,在本文件中,一种基于遗传性、多目标、进化优化的多功能音乐创作算法(以节奏和和谐或适当的合音节奏融在一起),在其中引入了三个具体目标,决定了音乐的制作和数学模型的素质。其中一个目标是音乐的规则和条例,连同其他两个目标,包括音乐专家的分数和普通听众的满意度目标,也包含进化周期中不可避免的要素。在这个文件中,一个基于遗传性多目的的进化、进化的进化周期,而一个最优化的进化的进化的进化的进取和进化的进化方法是模拟的进化专家的进化和进化的进化的进化式的进化式。在进化的进取中, 进化式的进化式的进化式的进化式的进化式的进化式的进化式的进化式的进化和进化式的进化和进化式的进化式的进化式的进化式的进化式的进制中,在进取的进取的进制成成成成成成的进制式的进制式的进制式的进制式的进制式的进制式的进制式的进制式的进制式的进制式的进制的进制式的进制式的进的进的进制中,在进制式的进制式的进。