Automatic music generation has become an epicenter research topic for many scientists in artificial intelligence, who are also interested in the music industry. Being a balanced combination of math and art, music in collaboration with A.I. can simplify the generation process for new musical pieces, and ease the interpretation of it to a tangible level. On the other hand, the artistic nature of music and its mingling with the senses and feelings of the composer makes the artificial generation and mathematical modeling of it infeasible. In fact, there are no clear evaluation measures that can combine the objective music grammar and structure with the subjective audience satisfaction goal. Also, original music contains different elements that it is inevitable to put together. Therefore, in this paper, a method based on a genetic multi-objective evolutionary optimization algorithm for the generation of polyphonic music (melody with rhythm and harmony or appropriate chords) is introduced in which three specific goals determine the qualifications of the music generated. One of the goals is the rules and regulations of music, which, along with the other two goals, including the scores of music experts and ordinary listeners, fits the cycle of evolution to get the most optimal response. The scoring of experts and listeners separately is modeled using a Bi-LSTM neural network and has been incorporated in the fitness function of the algorithm. The results show that the proposed method is able to generate difficult and pleasant pieces with desired styles and lengths, along with harmonic sounds that follow the grammar while attracting the listener, at the same time.


翻译:自动音乐的产生已成为许多人工智能科学家研究的一个核心课题,他们也对音乐产业感兴趣。作为数学和艺术的平衡组合,音乐与A.I.合作,音乐可以简化新音乐片段的产生过程,并使对它的解释容易到有形的地步。另一方面,音乐的艺术性质及其与作曲家感知和情感的混合使人造和数学模型不可行。事实上,没有明确的评估措施可以将客观的音乐语法和结构与主观观众满意度目标结合起来。此外,原音乐包含各种不可避免的元素。因此,在本文件中,一种基于遗传性、多目标、进化优化的多功能音乐创作算法(以节奏和和谐或适当的合音节奏融在一起),在其中引入了三个具体目标,决定了音乐的制作和数学模型的素质。其中一个目标是音乐的规则和条例,连同其他两个目标,包括音乐专家的分数和普通听众的满意度目标,也包含进化周期中不可避免的要素。在这个文件中,一个基于遗传性多目的的进化、进化的进化周期,而一个最优化的进化的进化的进化的进取和进化的进化方法是模拟的进化专家的进化和进化的进化的进化式的进化式。在进化的进取中, 进化式的进化式的进化式的进化式的进化式的进化式的进化式的进化式的进化和进化式的进化和进化式的进化式的进化式的进化式的进化式的进制中,在进取的进取的进制成成成成成成的进制式的进制式的进制式的进制式的进制式的进制式的进制式的进制式的进制式的进制式的进制的进制式的进制式的进的进的进制中,在进制式的进制式的进。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
203+阅读 · 2019年9月30日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
4+阅读 · 2018年12月3日
Paraphrase Generation with Deep Reinforcement Learning
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
203+阅读 · 2019年9月30日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
相关论文
Top
微信扫码咨询专知VIP会员