We propose Dense FixMatch, a simple method for online semi-supervised learning of dense and structured prediction tasks combining pseudo-labeling and consistency regularization via strong data augmentation. We enable the application of FixMatch in semi-supervised learning problems beyond image classification by adding a matching operation on the pseudo-labels. This allows us to still use the full strength of data augmentation pipelines, including geometric transformations. We evaluate it on semi-supervised semantic segmentation on Cityscapes and Pascal VOC with different percentages of labeled data and ablate design choices and hyper-parameters. Dense FixMatch significantly improves results compared to supervised learning using only labeled data, approaching its performance with 1/4 of the labeled samples.
翻译:我们建议使用“ense fixMatch”这一简单方法,通过强大的数据扩增,将假标签和一致性的正规化结合起来,在网上进行密集和结构化预测任务的半监督学习。我们通过在假标签上添加匹配操作,在图像分类以外的半监督学习问题中应用“fixMatch ” 。这使我们能够继续使用数据扩增管道的全部强度,包括几何变换。我们用不同比例的标签数据、板板设计选择和超参数,对市景和Pascal VOC的半监督语分解进行了评估。“Dense fixMatch”与仅使用标签数据的监督学习相比,其效果显著改善,接近于使用标签样本的四分之一。