Geospatial Information Systems are used by researchers and Humanitarian Assistance and Disaster Response (HADR) practitioners to support a wide variety of important applications. However, collaboration between these actors is difficult due to the heterogeneous nature of geospatial data modalities (e.g., multi-spectral images of various resolutions, timeseries, weather data) and diversity of tasks (e.g., regression of human activity indicators or detecting forest fires). In this work, we present a roadmap towards the construction of a general-purpose neural architecture (GPNA) with a geospatial inductive bias, pre-trained on large amounts of unlabelled earth observation data in a self-supervised manner. We envision how such a model may facilitate cooperation between members of the community. We show preliminary results on the first step of the roadmap, where we instantiate an architecture that can process a wide variety of geospatial data modalities and demonstrate that it can achieve competitive performance with domain-specific architectures on tasks relating to the U.N.'s Sustainable Development Goals.
翻译:研究人员以及人道主义援助和救灾工作者利用地理空间信息系统支持各种重要应用,但是,由于地理空间数据模式(例如各种分辨率的多光谱图像、时间序列、天气数据)和任务的多样性(例如人类活动指标的倒退或探测森林火灾)多种多样,这些行为者之间难以进行协作。在这项工作中,我们提出了一个路线图,以建立具有地理空间诱导偏见的通用神经结构(GPNA),预先以自我监督的方式对大量未贴标签的地球观测数据进行了培训。我们设想这种模式如何能够促进社区成员之间的合作。我们展示了路线图第一步的初步结果,我们在此过程中,我们回想出一个能够处理多种地理空间数据模式的架构,并表明它能够在与联合国可持续发展目标有关的任务的具体领域结构上实现竞争性业绩。