Online social as an extension of traditional life plays an important role in our daily lives. Users often seek out new friends that have significant similarities such as interests and habits, motivating us to exploit such online information to suggest friends to users. In this work, we focus on friend suggestion in online game platforms because in-game social quality significantly correlates with player engagement, determining game experience. Unlike a typical recommendation system that depends on item-user interactions, in our setting, user-user interactions do not depend on each other. Meanwhile, user preferences change rapidly due to fast changing game environment. There has been little work on designing friend suggestion when facing these difficulties, and for the first time we aim to tackle this in large scale online games. Motivated by the fast changing online game environment, we formulate this problem as friend ranking by modeling the evolution of similarity among users, exploiting the long-term and short-term feature of users in games. Our experiments on large-scale game datasets with several million users demonstrate that our proposed model achieves superior performance over other competing baselines.


翻译:作为传统生活的延伸的在线社交在我们的日常生活中发挥着重要的作用。用户经常寻找兴趣和习惯等有重大相似之处的新朋友,激励我们利用这些在线信息向用户推荐朋友。在这项工作中,我们侧重于在线游戏平台的朋友建议,因为游戏中的社会质量与玩家参与密切相关,决定游戏经验。不同于一个取决于项目用户互动的典型建议系统,在我们的环境下,用户用户用户互动并不取决于彼此。同时,用户偏好因游戏环境的快速变化而迅速变化。在面对这些困难时设计朋友建议的工作很少,而且我们第一次试图在大规模网上游戏中解决这一问题。受快速变化的在线游戏环境的驱动,我们把这个问题发展成朋友,通过模拟用户之间相似性的变化,利用游戏用户的长期和短期特征。我们与数百万用户进行的大规模游戏数据集实验表明,我们提议的模型在其它竞争基线上取得了优异的绩效。

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
61+阅读 · 2019年12月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员