The Information bottleneck (IB) method enables optimizing over the trade-off between compression of data and prediction accuracy of learned representations, and has successfully and robustly been applied to both supervised and unsupervised representation learning problems. However, IB has several limitations. First, the IB problem is hard to optimize. The IB Lagrangian $\mathcal{L}_{IB}:=I(X;Z)-\beta I(Y;Z)$ is non-convex and existing solutions guarantee only local convergence. As a result, the obtained solutions depend on initialization. Second, the evaluation of a solution is also a challenging task. Conventionally, it resorts to characterizing the information plane, that is, plotting $I(Y;Z)$ versus $I(X;Z)$ for all solutions obtained from different initial points. Furthermore, the IB Lagrangian has phase transitions while varying the multiplier $\beta$. At phase transitions, both $I(X;Z)$ and $I(Y;Z)$ increase abruptly and the rate of convergence becomes significantly slow for existing solutions. Recent works with IB adopt variational surrogate bounds to the IB Lagrangian. Although allowing efficient optimization, how close are these surrogates to the IB Lagrangian is not clear. In this work, we solve the IB Lagrangian using augmented Lagrangian methods. With augmented variables, we show that the IB objective can be solved with the alternating direction method of multipliers (ADMM). Different from prior works, we prove that the proposed algorithm is consistently convergent, regardless of the value of $\beta$. Empirically, our gradient-descent-based method results in information plane points that are denser and comparable to those obtained through the conventional Blahut-Arimoto-based solvers.


翻译:信息瓶颈( IB) 方法能够优化数据压缩和所学表现的预测准确性之间的权衡, 并且成功和有力地应用到受监管和不受监管的演示学习问题。 但是, IB 有几个限制。 首先, IB 问题很难优化。 IB Lagrangian $\ mathcal{L ⁇ IB} : = I( X; Z)\beta I( Y; Z) 美元是非默认的, 现有解决方案只能保证本地的趋同。 因此, 获得的解决方案取决于初始化。 其次, 对解决方案的评估也是一项具有挑战性的任务。 公约性, IB 使用信息平面图, 即绘制美元( Y; Z) 相对于美元( 美元) 美元( 美元), I( ) 平面值( ) 和 美元( 美元) 。 在阶段过渡中, 变异端法( ) 和 变法( Y; 递增 ) 和 美元( Z) 趋近点, 我们的趋近点( B) 渐渐变法。 虽然最近的工作进展法法能让I 渐渐渐渐渐渐渐渐渐渐变。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员