All current approaches for statically enforcing differential privacy in higher order languages make use of either linear or relational refinement types. A barrier to adoption for these approaches is the lack of support for expressing these "fancy types" in mainstream programming languages. For example, no mainstream language supports relational refinement types, and although Rust and modern versions of Haskell both employ some linear typing techniques, they are inadequate for embedding enforcement of differential privacy, which requires "full" linear types a la Girard. We propose a new type system that enforces differential privacy, avoids the use of linear and relational refinement types, and can be easily embedded in mainstream richly typed programming languages such as Scala, OCaml and Haskell. We demonstrate such an embedding in Haskell, demonstrate its expressiveness on case studies, and prove that our type-based enforcement of differential privacy is sound.


翻译:目前所有静态地强制执行较高等级语言中差异隐私权的方法都使用线性或关系改进类型。这些方法的采用障碍是缺乏支持,在主流编程语言中表达这些“租赁类型 ” 。例如,主流语言不支持关系改进类型,尽管拉斯特和现代版本的哈斯凯尔都采用某些线性打字技术,但这些方法不足以嵌入差异隐私的强制执行,这需要“全”线性一类的Girard。我们提议一种新的类型系统,强制实施差异隐私,避免使用线性和关系改进类型,并容易嵌入主流丰富类型编程语言,如Scala、OCaml和Haskell。我们展示了这种嵌入Haskell的功能,展示了其在案例研究中的清晰度,并证明我们基于类型对差异隐私的强制执行是稳妥的。

0
下载
关闭预览

相关内容

Haskell 是一种纯函数式编程语言,于 1990 年在编程语言 Miranda 的基础上标准化,并且以 λ 演算为基础发展而来。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年2月28日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年2月28日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员