Despite prosody is related to the linguistic information up to the discourse structure, most text-to-speech (TTS) systems only take into account that within each sentence, which makes it challenging when converting a paragraph of texts into natural and expressive speech. In this paper, we propose to use the text embeddings of the neighboring sentences to improve the prosody generation for each utterance of a paragraph in an end-to-end fashion without using any explicit prosody features. More specifically, cross-utterance (CU) context vectors, which are produced by an additional CU encoder based on the sentence embeddings extracted by a pre-trained BERT model, are used to augment the input of the Tacotron2 decoder. Two types of BERT embeddings are investigated, which leads to the use of different CU encoder structures. Experimental results on a Mandarin audiobook dataset and the LJ-Speech English audiobook dataset demonstrate the use of CU information can improve the naturalness and expressiveness of the synthesized speech. Subjective listening testing shows most of the participants prefer the voice generated using the CU encoder over that generated using standard Tacotron2. It is also found that the prosody can be controlled indirectly by changing the neighbouring sentences.


翻译:尽管语言信息与话语结构相关,但大多数文本到语音(TTS)系统仅考虑到每个句子内的语言信息,因此在将一段文字转换成自然和表达式讲话时会遇到挑战。在本文件中,我们提议使用邻接句的嵌入文字,改进每段语句的流出生成,而不必使用任何明确的流传特征。更具体地说,交叉通缩(CU)背景矢量(CU)信息是根据预先培训的BERT模型提取的加CU编码器生成的,用来增加Tacotron2解密器的投入。对两种类型的布尔特尔嵌入进行了调查,从而导致使用不同的CUC编码结构。曼达林音簿数据集和LJ-Speech英语音簿数据集的实验结果显示,CUB信息的使用能够提高合成语音的自然性和直观性。主观听觉测试显示,大多数受控制的参与者也选择使用间接生成的音频标准,即由TAC公司生成。

1
下载
关闭预览

相关内容

语音合成(Speech Synthesis),也称为文语转换(Text-to-Speech, TTS,它是将任意的输入文本转换成自然流畅的语音输出。语音合成涉及到人工智能、心理学、声学、语言学、数字信号处理、计算机科学等多个学科技术,是信息处理领域中的一项前沿技术。 随着计算机技术的不断提高,语音合成技术从早期的共振峰合成,逐步发展为波形拼接合成和统计参数语音合成,再发展到混合语音合成;合成语音的质量、自然度已经得到明显提高,基本能满足一些特定场合的应用需求。目前,语音合成技术在银行、医院等的信息播报系统、汽车导航系统、自动应答呼叫中心等都有广泛应用,取得了巨大的经济效益。 另外,随着智能手机、MP3、PDA 等与我们生活密切相关的媒介的大量涌现,语音合成的应用也在逐渐向娱乐、语音教学、康复治疗等领域深入。可以说语音合成正在影响着人们生活的方方面面。
Transformer文本分类代码
专知会员服务
117+阅读 · 2020年2月3日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
使用BERT做文本摘要
专知
23+阅读 · 2019年12月7日
《自然》(20190829出版)一周论文导读
科学网
6+阅读 · 2019年8月30日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
SRGAN论文笔记
统计学习与视觉计算组
109+阅读 · 2018年4月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Neural Speech Synthesis with Transformer Network
Arxiv
5+阅读 · 2019年1月30日
VIP会员
相关VIP内容
Transformer文本分类代码
专知会员服务
117+阅读 · 2020年2月3日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
使用BERT做文本摘要
专知
23+阅读 · 2019年12月7日
《自然》(20190829出版)一周论文导读
科学网
6+阅读 · 2019年8月30日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
SRGAN论文笔记
统计学习与视觉计算组
109+阅读 · 2018年4月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员