A novel solve-training framework is proposed to train neural network in representing low dimensional solution maps of physical models. Solve-training framework uses the neural network as the ansatz of the solution map and train the network variationally via loss functions from the underlying physical models. Solve-training framework avoids expensive data preparation in the traditional supervised training procedure, which prepares labels for input data, and still achieves effective representation of the solution map adapted to the input data distribution. The efficiency of solve-training framework is demonstrated through obtaining solutions maps for linear and nonlinear elliptic equations, and maps from potentials to ground states of linear and nonlinear Schr\"odinger equations.
翻译:提出了一个新的解决培训框架,用于培训神经网络,以代表物理模型的低维溶解图; 解决培训框架将神经网络用作解决方案图的ansatz,通过基本物理模型的损失功能对网络进行不同培训; 解决培训框架避免在传统的监督培训程序中进行昂贵的数据编制,传统监督培训程序为输入数据制作标签,仍然能够有效地代表适应输入数据分布的解决方案图; 解决培训框架的效率通过获得线性和非线性椭圆方程式的解决方案图,以及线性和非线性 Schr\'odinger方程式从潜在状态到地面状态的地图得到证明。