We consider codes for channels with extreme noise that emerge in various low-power applications. Simple LDPC-type codes with parity checks of weight 3 are first studied for any dimension $m\rightarrow\infty.$ These codes form modulation schemes: they improve the original channel output for any $SNR>$ $-6$ dB (per information bit) and gain $3$ dB over uncoded modulation as $SNR$ grows. However, they also have a floor on the output bit error rate (BER) irrespective of their length. Tight lower and upper bounds, which are virtually identical to simulation results, are then obtained for BER at any SNR. We also study a combined scheme that splits $m$ information bits into $b$ blocks and protects each with some polar code. Decoding moves back and forth between polar and LDPC codes, every time using a polar code of a higher rate. For a sufficiently large constant $b$ and $m\rightarrow\infty$, this design yields a vanishing BER at any SNR that is arbitrarily close to the Shannon limit of -1.59 dB. Unlike other existing designs, this scheme has polynomial complexity of order $m\ln m$ per information bit.
翻译:我们考虑在各种低功率应用中出现极端噪音的频道的代码。 简单的 LDPC 类型代码, 具有同等重量3 的对等检查 3, 首次为任何尺寸研究 $m\rightrow\ infty。 $$ 。 这些代码构成调制方案: 它们改进了任何$SNR>$-6美元dB(每个信息位数)的原始频道输出量, 并在未编码的调制量上获得了3美元的dB 美元。 但是, 它们也有产出比差率( BER) 的下限和上限值( BER ) 。 与模拟结果几乎完全相同的下限和上限值, 然后在任何 SNR 获得。 我们还研究一个组合方案, 将$m 信息位数分割为$b美元块, 并用一些极地代码保护每个区块。 每当使用更高速率的极地代码,, 就会得到 $bb美元和 $mrightrowrook\ int int $, 这种设计会在任何任意接近于 香市复杂度范围的SNRR $1. 0. 59\ m rom 的系统上产生消失。 其他设计。