Monomial codes were recently equipped with partial order relations, fact that allowed researchers to discover structural properties and efficient algorithm for constructing polar codes. Here, we refine the existing order relations in the particular case of Binary Erasure Channel. The new order relation takes us closer to the ultimate order relation induced by the pointwise evaluation of the Bhattacharyya parameter of the synthetic channels. The best we can hope for is still a partial order relation. To overcome this issue we appeal to related technique from network theory. Reliability network theory was recently used in the context of polar coding and more generally in connection with decreasing monomial codes. In this article, we investigate how the concept of average reliability is applied for polar codes designed for the binary erasure channel. Instead of minimizing the error probability of the synthetic channels, for a particular value of the erasure parameter p, our codes minimize the average error probability of the synthetic channels. By means of basic network theory results we determine a closed formula for the average reliability of a particular synthetic channel, that recently gain the attention of researchers.
翻译:单式代码最近配备了部分顺序关系, 使研究人员能够发现结构属性和构建极地代码的有效算法。 在这里, 我们改进了二进制断层通道特定情况下的现有顺序关系。 新的顺序关系使我们更接近对合成通道的Bhattacharyya参数进行点评所引发的最终顺序关系。 我们所希望的仍然是局部顺序关系。 为了克服这个问题, 我们从网络理论中呼吁相关的技术。 可靠性网络理论最近被用于极地编码中, 并且更一般地用于减少单式代码。 在本条中, 我们研究如何将平均可靠性概念应用于为二进制断层通道设计的极地代码。 我们的代码没有将合成通道的误差概率降到最低, 而不是将合成通道的平均误差概率降到最低。 通过基本网络理论的结果, 我们确定了一种封闭的公式, 用于特定合成通道的平均可靠性, 最近引起了研究人员的注意。