In this paper, we consider a communication system where a sender sends messages over a memoryless Gaussian point-to-point channel to a receiver and receives the output feedback over another Gaussian channel with known variance and unit delay. The sender sequentially transmits the message over multiple times till a certain error performance is achieved. The aim of our work is to design a transmission strategy to process every transmission with the information that was received in the previous feedback and send a signal so that the estimation error drops as quickly as possible. The optimal code is unknown for channels with noisy output feedback when the block length is finite. Even within the family of linear codes, optimal codes are unknown in general. Bridging this gap, we propose a family of linear sequential codes and provide a dynamic programming algorithm to solve for a closed form expression for the optimal code within a class of sequential linear codes. The optimal code discovered via dynamic programming is a generalized version of which the Schalkwijk-Kailath (SK) scheme is one special case with noiseless feedback; our proposed code coincides with the celebrated SK scheme for noiseless feedback settings.
翻译:在本文中, 我们考虑一个通信系统, 发送者通过一个没有记忆的 Gaussian 点对点频道向接收者发送信息, 并在另一个 Gaussian 频道上接收输出反馈, 且有已知的差异和单位延迟。 发送者会连续多次发送信息, 直到某个错误性能实现。 我们工作的目的是设计一个传输战略, 处理先前反馈中收到的信息, 并发送一个信号, 以便尽可能快地减少估计错误。 当块长度有限时, 最优代码对于有噪音输出反馈的频道来说是未知的。 即使在线性代码组中, 最优代码也是一般未知的 。 缩小这一差距, 我们提议一个线性序列代码的组合, 并提供动态程序算法, 以解决一组线性线性代码中最佳代码的封闭形式表达方式。 通过动态编程发现的最佳代码是一个通用版本, 即 Schalkwijk- Kailath (SK) 方案是一个无噪音反馈的特例; 我们提议的代码与无噪音反馈的SK 计划相吻合。