We consider the well known Coordinated Attack Problem, where two generals have to decide on a common attack, when their messengers can be captured by the enemy. Informally, this problem represents the difficulties to agree in the presence of communication faults. We consider here only omission faults (loss of message), but contrary to previous studies, we do not to restrict the way messages can be lost, i.e. we make no specific assumption, we use no specific failure metric. In the large subclass of message adversaries where the double simultaneous omission can never happen, we characterize which ones are obstructions for the Coordinated Attack Problem. We give two proofs of this result. One is combinatorial and uses the classical bivalency technique for the necessary condition. The second is topological and uses simplicial complexes to prove the necessary condition. We also present two different Consensus algorithms that are combinatorial (resp. topological) in essence. Finally, we analyze the two proofs and illustrate the relationship between the combinatorial approach and the topological approach in the very general case of message adversaries. We show that the topological characterization gives a clearer explanation of why some message adversaries are obstructions or not. This result is a convincing illustration of the power of topological tools for distributed computability.


翻译:我们考虑了众所周知的协同攻击问题, 两位将军在敌人能够抓住他们的信使时, 需要决定共同攻击。 非正式地说, 这个问题代表了在沟通错误的情况下难以达成一致。 我们在这里只考虑疏漏错误( 信息丢失), 但与先前的研究相反, 我们并不限制信息丢失的方式, 也就是说, 我们没有做出具体假设, 我们没有使用具体的失败度度度量。 在大型的信息对手子类中, 无法同时发生双重遗漏, 我们描述哪些是协调攻击问题的阻力。 我们给出了两种证据。 一个是组合性的, 使用典型的双重力技术来应对必要的条件。 第二个是表面学的, 使用简单的复杂方法来证明必要的条件。 我们还提出了两种不同的共识算法, 本质上是组合( 表面学的) 。 最后, 我们分析了两种证据, 并说明了组合式方法与信息对手一般情况下的顶级方法之间的关系。 我们证明, 表面上的描述更清晰地解释了某种权力可塑性工具为何是令人信服的。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
26+阅读 · 2020年2月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【LeetCode 136】 关关的刷题日记32 Single Number
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Arxiv
0+阅读 · 2021年5月13日
Arxiv
0+阅读 · 2021年5月10日
Arxiv
0+阅读 · 2021年5月10日
Arxiv
0+阅读 · 2021年5月7日
Arxiv
0+阅读 · 2021年5月4日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2020年9月6日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
26+阅读 · 2020年2月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【LeetCode 136】 关关的刷题日记32 Single Number
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Top
微信扫码咨询专知VIP会员