Path integral quantum Monte Carlo (PIMC) is a method for estimating thermal equilibrium properties of stoquastic quantum spin systems by sampling from a classical Gibbs distribution using Markov chain Monte Carlo. The PIMC method has been widely used to study the physics of materials and for simulated quantum annealing, but these successful applications are rarely accompanied by formal proofs that the Markov chains underlying PIMC rapidly converge to the desired equilibrium distribution. In this work we analyze the mixing time of PIMC for 1D stoquastic Hamiltonians, including disordered transverse Ising models (TIM) with long-range algebraically decaying interactions as well as disordered XY spin chains with nearest-neighbor interactions. By bounding the convergence time to the equilibrium distribution we rigorously justify the use of PIMC to approximate partition functions and expectations of observables for these models at inverse temperatures that scale at most logarithmically with the number of qubits. The mixing time analysis is based on the canonical paths method applied to the single-site Metropolis Markov chain for the Gibbs distribution of 2D classical spin models with couplings related to the interactions in the quantum Hamiltonian. Since the system has strongly nonisotropic couplings that grow with system size, it does not fall into the known cases where 2D classical spin models are known to mix rapidly.


翻译:Monte Carlo(PIMC)是利用Markov 链条Monte Carlo(Monte Carlo)从古典Gibbs分布中取样,以估计二次量子旋流系统的热平衡特性的一种方法。PIMC方法被广泛用于研究材料物理学和模拟量排射,但这些成功的应用很少附有正式证明,证明PIMC背后的Markov链条迅速与理想的均衡分布相融合。在这项工作中,我们分析了1D 二次量级汉密尔顿人PIMC的混合时间,包括具有长距离变形相互作用的干扰跨反Ising模型(TIM),以及具有近邻互动的干扰 XY 旋转链。通过将材料的集合时间与均衡分布相连接,我们严格证明使用PIMC 来估计这些模型在反温条件下的分布功能和可观测值的预期值,在大多数对调时,与qubitribits数量相比。混合时间分析基于适用于长距离变形变形变形变形变形模型的单点Monpolpoltical robolov 方法,在Glibislov 的2D Climalismmmissmissmissionalismissional 中,在不为不为常变形变形变型的2-colmocolmismismismolmolmismismismismismismismismmlusismmus 。在不为不为史上,而已知变型号。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
《图表示学习》报告,McGill助理教授Hamilton讲授,79页ppt
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
8+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Exponential Negation of a Probability Distribution
Arxiv
0+阅读 · 2021年4月1日
Arxiv
0+阅读 · 2021年3月31日
Arxiv
0+阅读 · 2021年3月30日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
《图表示学习》报告,McGill助理教授Hamilton讲授,79页ppt
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
8+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员