Functional principal components analysis is a popular tool for inference on functional data. Standard approaches rely on an eigendecomposition of a smoothed covariance surface in order to extract the orthonormal functions representing the major modes of variation. This approach can be a computationally intensive procedure, especially in the presence of large datasets with irregular observations. In this article, we develop a Bayesian approach, which aims to determine the Karhunen-Lo\`eve decomposition directly without the need to smooth and estimate a covariance surface. More specifically, we develop a variational Bayesian algorithm via message passing over a factor graph, which is more commonly referred to as variational message passing. Message passing algorithms are a powerful tool for compartmentalizing the algebra and coding required for inference in hierarchical statistical models. Recently, there has been much focus on formulating variational inference algorithms in the message passing framework because it removes the need for rederiving approximate posterior density functions if there is a change to the model. Instead, model changes are handled by changing specific computational units, known as fragments, within the factor graph. We extend the notion of variational message passing to functional principal components analysis. Indeed, this is the first article to address a functional data model via variational message passing. Our approach introduces two new fragments that are necessary for Bayesian functional principal components analysis. We present the computational details, a set of simulations for assessing accuracy and speed and an application to United States temperature data.


翻译:功能主元件分析是一种常用的工具,用于对功能性数据进行推断。 标准方法依赖于光滑共变法表面的变异式算法, 以提取代表主要变异模式的正方形函数。 这种方法可以是一种计算密集的程序, 特别是在有大量数据集且观测不规则的情况下。 在本篇文章中, 我们开发了一种贝叶斯法, 目的是直接确定 Karhunen- Lo ⁇ ⁇ éeve 分解, 而不需要平滑和估计共差表面 。 更具体地说, 我们开发了一种变异性贝伊斯算法, 通过传递信息传递到一个要素图, 通常被称为变异性电文传递。 电文传递算法是一种强大的工具, 用于分层统计模型的分解和编码。 最近, 我们非常注重在信息传递框架中制定变异性算法, 因为如果改变模型, 则不需要重新显示近似后端密度函数。 相反, 模式的变化是通过改变特定的计算单位, 被识别为变异性电文的分数, 。 在功能性变法中, 我们的分数分析中, 将先先通过功能变数据 。

0
下载
关闭预览

相关内容

【经典书】精通Linux,394页pdf
专知会员服务
92+阅读 · 2021年2月19日
专知会员服务
51+阅读 · 2020年12月10日
专知会员服务
84+阅读 · 2020年12月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月28日
Arxiv
0+阅读 · 2021年5月26日
Arxiv
7+阅读 · 2020年5月25日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
8+阅读 · 2018年3月17日
Arxiv
3+阅读 · 2018年1月10日
VIP会员
相关资讯
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员