Loop closing is a fundamental part of simultaneous localization and mapping (SLAM) for autonomous mobile systems. In the field of visual SLAM, bag of words (BoW) has achieved great success in loop closure. The BoW features for loop searching can also be used in the subsequent 6-DoF loop correction. However, for 3D LiDAR SLAM, the state-of-the-art methods may fail to effectively recognize the loop in real time, and usually cannot correct the full 6-DoF loop pose. To address this limitation, we present a novel Bag of Words for real-time loop closing in 3D LiDAR SLAM, called BoW3D. Our method not only efficiently recognizes the revisited loop places, but also corrects the full 6-DoF loop pose in real time. BoW3D builds the bag of words based on the 3D LiDAR feature LinK3D, which is efficient, pose-invariant and can be used for accurate point-to-point matching. We furthermore embed our proposed method into 3D LiDAR odometry system to evaluate loop closing performance. We test our method on public dataset, and compare it against other state-of-the-art algorithms. BoW3D shows better performance in terms of F1 max and extended precision scores on most scenarios. It is noticeable that BoW3D takes an average of 48 ms to recognize and correct the loops on KITTI 00 (includes 4K+ 64-ray LiDAR scans), when executed on a notebook with an Intel Core i7 @2.2 GHz processor. We release the implementation of our method here: https://github.com/YungeCui/BoW3D.
翻译:自动移动系统同时本地化和绘图( SLAM) 的关闭是自动移动系统同步本地化和映像( SLAM) 的一个基本部分。 在视觉 SLAM 领域, 一包单词( BoW) 在环状关闭中取得了巨大成功 。 随后的 6 - DoF 环状校正中也可以使用 环状搜索的 BoW 功能。 但是, 3D LiDAR SLAM, 最先进的方法可能无法实时有效识别环状, 通常无法纠正 6 - DoF 环形的完整结构。 为解决这一限制, 我们推出了一套新颖的文字袋, 用于实时环状关闭 3D LiDAR SLAM, 调用 BOW3D 。 我们的方法不仅高效地识别环状环状圈位置, 而且实时地纠正了整个 6 - DoF环形环形的设置。 BoW 3 D 以 3 3 的精确性能为3 。 我们用3 KK- 格式来测试一个更精确的运行方法, 。 我们的直径直径直径直径直径直径直径直径, 。 当我们用直径直径直径的 KK- k- k- 直径直径直径直径对着的运行的运行时, 我们用直径直径直径直径直径直径直到直到直到直径直径直到直到直到直到 。