To facilitate conversational question answering (CQA) over hybrid contexts in finance, we present a new dataset, named PACIFIC. Compared with existing CQA datasets, PACIFIC exhibits three key features: (i) proactivity, (ii) numerical reasoning, and (iii) hybrid context of tables and text. A new task is defined accordingly to study Proactive Conversational Question Answering (PCQA), which combines clarification question generation and CQA. In addition, we propose a novel method, namely UniPCQA, to adapt a hybrid format of input and output content in PCQA into the Seq2Seq problem, including the reformulation of the numerical reasoning process as code generation. UniPCQA performs multi-task learning over all sub-tasks in PCQA and incorporates a simple ensemble strategy to alleviate the error propagation issue in the multi-task learning by cross-validating top-$k$ sampled Seq2Seq outputs. We benchmark the PACIFIC dataset with extensive baselines and provide comprehensive evaluations on each sub-task of PCQA.


翻译:为了促进金融领域中混合上下文的对话式问题回答(CQA),我们提出了一个新数据集,称为PACIFIC。相比于现有的CQA 数据集,PACIFIC 具有三个关键特征:(i)主动性,(ii)数值推理,和(iii)一个同时包含表格和文本的混合上下文。研究相应的新任务,称为主动式对话式问题回答(PCQA),它结合了澄清问题生成和对话式问题回答。此外,我们提出了一种新方法UniPCQA,将PCQA的混合格式的输入和输出内容改编为Seq2Seq问题,包括将数值推理过程改编为代码生成。UniPCQA在PCQA的所有子任务上执行多任务学习,并通过交叉验证前k个样本的Seq2Seq 输出来缓解多任务学习中的错误传播问题。我们利用广泛的基线对PACIFIC数据集进行了基准测试,并对PCQA的每个子任务进行了全面评估。

0
下载
关闭预览

相关内容

自动问答(Question Answering, QA)是指利用计算机自动回答用户所提出的问题以满足用户知识需求的任务。不同于现有搜索引擎,问答系统是信息服务的一种高级形式,系统返回用户的不再是基于关键词匹配排序的文档列表,而是精准的自然语言答案。近年来,随着人工智能的飞速发展,自动问答已经成为倍受关注且发展前景广泛的研究方向。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
专知会员服务
54+阅读 · 2021年2月2日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACL2020 | 基于Knowledge Embedding的多跳知识图谱问答
AI科技评论
18+阅读 · 2020年6月29日
自然语言处理常见数据集、论文最全整理分享
深度学习与NLP
11+阅读 · 2019年1月26日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月11日
VIP会员
相关VIP内容
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
专知会员服务
54+阅读 · 2021年2月2日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACL2020 | 基于Knowledge Embedding的多跳知识图谱问答
AI科技评论
18+阅读 · 2020年6月29日
自然语言处理常见数据集、论文最全整理分享
深度学习与NLP
11+阅读 · 2019年1月26日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员