In the context of image processing, given a $k$-th order, homogeneous and linear differential operator with constant coefficients, we study a class of variational problems whose regularizing terms depend on the operator. Precisely, the regularizers are integrals of spatially inhomogeneous integrands with convex dependence on the differential operator applied to the image function. The setting is made rigorous by means of the theory of Radon measures and of suitable function spaces modeled on $BV$. We prove the lower semicontinuity of the functionals at stake and existence of minimizers for the corresponding variational problems. Then, we embed the latter into a bilevel scheme in order to automatically compute the space-dependent regularization parameters, thus allowing for good flexibility and preservation of details in the reconstructed image. We establish existence of optima for the scheme and we finally substantiate its feasibility by numerical examples in image denoising. The cases that we treat are Huber versions of the first and second order total variation with both the Huber and the regularization parameter being spatially dependent. Notably the spatially dependent version of second order total variation produces high quality reconstructions when compared to regularizations of similar type, and the introduction of the spatially dependent Huber parameter leads to a further enhancement of the image details.
翻译:在图像处理方面,考虑到美元顺序、同质和线性差异操作员的不变系数,我们研究的是一组变异问题,其条件的正规化取决于操作员。确切地说,正规化者是空间上不相容的成份,对不同操作员应用不同的图像功能具有共性依赖性。根据Radon措施理论和以$BV美元为模型的合适功能空间模型,这种设置十分严格。我们所处理的案例是一等和二等功能的半连续性较低,并且存在相应的变异问题最小化者。然后,我们将后者纳入双等办法,以便自动计算依赖空间的规范化参数,从而在重新改造的图像中允许良好的灵活性和细节保存。我们为这个办法确定了选择性,最后我们通过图像淡化的数字示例来证实其可行性。我们处理的案例是第一和第二级的Huber版本,与Huber和正规化参数都具有空间依赖性。值得注意的是,根据空间依赖的第二等全等全位变化的第二等版本将产生高质量的调整性变化,从而在与图像的正规化类型相比,使空间图质的升级成为了较高的基准。