Purpose: To develop a synergistic image reconstruction framework that exploits multicontrast (MC), multicoil, and compressed sensing (CS) redundancies in magnetic resonance imaging (MRI). Approach: CS, MC acquisition, and parallel imaging (PI) have been individually well developed, but the combination of the three has not been equally well studied, much less the potential benefits of isotropy within such a setting. Inspired by total variation theory, we introduce an isotropic MC image regularizer and attain its full potential by integrating it into compressed MC multicoil MRI. A convex optimization problem is posed to model the new variational framework and a first-order algorithm is developed to solve the problem. Results: It turns out that the proposed isotropic regularizer outperforms many of the state-of-the-art reconstruction methods not only in terms of rotation-invariance preservation of symmetrical features, but also in suppressing noise or streaking artifacts, which are normally encountered in PI methods at aggressive undersampling rates. Moreover, the new framework significantly prevents intercontrast leakage of contrast-specific details, which seems to be a difficult situation to handle for some variational and low-rank MC reconstruction approaches. Conclusions: The new framework is a viable option for image reconstruction in fast protocols of MC parallel MRI, potentially reducing patient discomfort in otherwise long and time-consuming scans.


翻译:目的: 开发一个利用磁共振成像(MRI)中磁共振成像(MRI)中磁共振成像(MRI)冗余的协同图像重建框架; 方法:CS、MC的获取和平行成像(PI)的单个开发完善,但三种成像(PI)的组合并没有同样得到很好的研究,更没有在这种环境下对异性成像的潜在好处进行同样的研究。 受全变异理论的启发,我们引入了异性MC图像常规化的异性成像仪,并通过将其纳入压缩的MC多焦核成磁共振成像(CS)来充分发挥其潜力。 在新的变异性框架和一阶算法中,出现了一个螺旋优化的问题。 此外,新的框架极大地防止了新变异性框架和新变异性模型的变异性。 快速变异的重建框架似乎是快速的模型。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
1+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员