We present a new algorithmic framework for grouped variable selection that is based on discrete mathematical optimization. While there exist several appealing approaches based on convex relaxations and nonconvex heuristics, we focus on optimal solutions for the $\ell_0$-regularized formulation, a problem that is relatively unexplored due to computational challenges. Our methodology covers both high-dimensional linear regression and nonparametric sparse additive modeling with smooth components. Our algorithmic framework consists of approximate and exact algorithms. The approximate algorithms are based on coordinate descent and local search, with runtimes comparable to popular sparse learning algorithms. Our exact algorithm is based on a standalone branch-and-bound (BnB) framework, which can solve the associated mixed integer programming (MIP) problem to certified optimality. By exploiting the problem structure, our custom BnB algorithm can solve to optimality problem instances with $5 \times 10^6$ features in minutes to hours -- over $1000$ times larger than what is currently possible using state-of-the-art commercial MIP solvers. We also explore statistical properties of the $\ell_0$-based estimators. We demonstrate, theoretically and empirically, that our proposed estimators have an edge over popular group-sparse estimators in terms of statistical performance in various regimes.


翻译:我们为基于离散数学优化的分组变量选择提出了一个新的算法框架。 虽然存在一些基于康韦克斯放松和非康维克斯超光度的吸引性方法, 但我们的精确算法基于一个独立分支和约束(BnB)框架, 这个框架可以解决相关的混合整流编程(MIP)问题, 以验证最佳性能。 通过利用问题结构, 我们的定制的BnB算法可以解决最佳性问题, 以每小时5美元计时10美分6美元的特征, 比目前可能使用的先进商业MIP解算器大1 000倍以上。 我们还探索了以美元为基数的统计学等级, 并展示了以美元为基数的统计学等级, 并展示了以美元为基数的不同统计学等级的统计学术语。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
42+阅读 · 2020年12月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年6月5日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员