We consider a discrete optimization formulation for learning sparse classifiers, where the outcome depends upon a linear combination of a small subset of features. Recent work has shown that mixed integer programming (MIP) can be used to solve (to optimality) $\ell_0$-regularized regression problems at scales much larger than what was conventionally considered possible. Despite their usefulness, MIP-based global optimization approaches are significantly slower compared to the relatively mature algorithms for $\ell_1$-regularization and heuristics for nonconvex regularized problems. We aim to bridge this gap in computation times by developing new MIP-based algorithms for $\ell_0$-regularized classification. We propose two classes of scalable algorithms: an exact algorithm that can handle $p\approx 50,000$ features in a few minutes, and approximate algorithms that can address instances with $p\approx 10^6$ in times comparable to the fast $\ell_1$-based algorithms. Our exact algorithm is based on the novel idea of \textsl{integrality generation}, which solves the original problem (with $p$ binary variables) via a sequence of mixed integer programs that involve a small number of binary variables. Our approximate algorithms are based on coordinate descent and local combinatorial search. In addition, we present new estimation error bounds for a class of $\ell_0$-regularized estimators. Experiments on real and synthetic data demonstrate that our approach leads to models with considerably improved statistical performance (especially, variable selection) when compared to competing methods.


翻译:我们考虑为学习分散的分类器制定离散的优化配方,其结果取决于一小组特征的线性组合。最近的工作表明,混合整数编程(MIP)可以用来解决(最优化)$\ell_0美元(美元)常规回归问题,其规模远大于常规认为可行的范围。尽管其有用性,但基于MIP的全球优化方法比相对成熟的计算法要慢得多,因为美元1美元(美元1美元)的正规化和超常性(美元1美元)的常规化问题。我们的目标是通过为美元=ell_0美元常规分类开发基于MIP的新算法来弥合计算时间上的这一差距。我们提出了两类可缩略微缩缩缩缩缩缩缩缩算法:精确算法可以在几分钟内处理$p\approx 50,000美元特征,以及近似于美元=1美元(美元)的快速算法。我们精确的算法基于新改进的计算方法,即基于基于基于正缩缩缩缩缩缩缩缩缩缩算法的计算方法,我们用原始变数进行原始变校正数据。

0
下载
关闭预览

相关内容

【2020新书】图机器学习,Graph-Powered Machine Learning
专知会员服务
342+阅读 · 2020年1月27日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月28日
Arxiv
7+阅读 · 2021年5月25日
Arxiv
6+阅读 · 2019年12月30日
Arxiv
4+阅读 · 2019年11月25日
Arxiv
7+阅读 · 2019年5月31日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Top
微信扫码咨询专知VIP会员