Recovering linear subspaces from data is a fundamental and important task in statistics and machine learning. Motivated by heterogeneity in Federated Learning settings, we study a basic formulation of this problem: the principal component analysis (PCA), with a focus on dealing with irregular noise. Our data come from $n$ users with user $i$ contributing data samples from a $d$-dimensional distribution with mean $\mu_i$. Our goal is to recover the linear subspace shared by $\mu_1,\ldots,\mu_n$ using the data points from all users, where every data point from user $i$ is formed by adding an independent mean-zero noise vector to $\mu_i$. If we only have one data point from every user, subspace recovery is information-theoretically impossible when the covariance matrices of the noise vectors can be non-spherical, necessitating additional restrictive assumptions in previous work. We avoid these assumptions by leveraging at least two data points from each user, which allows us to design an efficiently-computable estimator under non-spherical and user-dependent noise. We prove an upper bound for the estimation error of our estimator in general scenarios where the number of data points and amount of noise can vary across users, and prove an information-theoretic error lower bound that not only matches the upper bound up to a constant factor, but also holds even for spherical Gaussian noise. This implies that our estimator does not introduce additional estimation error (up to a constant factor) due to irregularity in the noise. We show additional results for a linear regression problem in a similar setup.


翻译:从数据中回收线性子空间是统计和机器学习中的一项根本和重要的任务。 受Federed Learning环境中不同差异驱动, 我们研究这一问题的基本配方: 主要的组件分析( PCA), 重点是处理非正常噪音。 我们的数据来自用户的美元用户, 以美元为单位, 以美元为单位, 以美元为单位, 提供数据样本。 我们的目标是利用所有用户的数据点来回收由美元=mu_ 1,\ldots,\mu_ nu_ n$ 共享的线性子空间。 使用所有用户的数据点, 每个用户的每个数据点的美元都是通过将一个独立的平均值- 零噪声矢量添加到$\ mu_ i$。 如果我们每个用户只有一个数据点, 亚空间的子回收是信息- 以美元为单位, 以美元为单位, 以美元为单位, 则需要额外的限制性假设。 我们避免这些假设, 利用每个用户至少两个数据点, 以美元为单位, 来设计一个高效的计算算算算器, $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年12月7日
Regularized ERM on random subspaces
Arxiv
0+阅读 · 2022年12月7日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员