The automatic generation of floorplans given user inputs has great potential in architectural design and has recently been explored in the computer vision community. However, the majority of existing methods synthesize floorplans in the format of rasterized images, which are difficult to edit or customize. In this paper, we aim to synthesize floorplans as sequences of 1-D vectors, which eases user interaction and design customization. To generate high fidelity vectorized floorplans, we propose a novel two-stage framework, including a draft stage and a multi-round refining stage. In the first stage, we encode the room connectivity graph input by users with a graph convolutional network (GCN), then apply an autoregressive transformer network to generate an initial floorplan sequence. To polish the initial design and generate more visually appealing floorplans, we further propose a novel panoptic refinement network(PRN) composed of a GCN and a transformer network. The PRN takes the initial generated sequence as input and refines the floorplan design while encouraging the correct room connectivity with our proposed geometric loss. We have conducted extensive experiments on a real-world floorplan dataset, and the results show that our method achieves state-of-the-art performance under different settings and evaluation metrics.
翻译:用户投入的自动生成楼面图在建筑设计方面具有巨大的潜力,最近已在计算机视觉界进行了探索。然而,大多数现有方法以光化图像的形式合成楼面图,很难编辑或定制。在本文中,我们的目标是将楼面图合成为1D矢量的序列,这样便于用户互动和设计定制。为了产生高度忠诚的矢量式楼面图,我们提议了一个新型的两阶段框架,包括一个起草阶段和一个多轮式改进阶段。在第一阶段,我们将用户的房间连通图输入输入以图表革命网络(GCN)进行编码,然后应用一个自动递增式变压器网络来生成初步的楼面图序列。为了优化初始设计和生成更具有视觉吸引力的楼层图,我们进一步提议建立一个由GCN和一个变异的网络组成的新的全局性改进网络。PRN将最初生成的序列作为投入,并改进楼面规划的设计,同时鼓励正确的房间与我们提议的几何仪图损失连接。我们根据一种不同的地貌和测量方法进行了广泛的实验,我们实现了不同的地平面图的运行和测量结果。