The \emph{Wiener index} is one of the most widely studied parameters in chemical graph theory. It is defined as the sum of the lengths of the shortest paths between all unordered pairs of vertices in a given graph. In 1991, \v{S}olt\'es posed the following problem regarding the Wiener index: Find all graphs such that its Wiener index is preserved upon removal of any vertex. The problem is far from being solved and to this day, only one graph with such property is known: the cycle graph on 11 vertices. In this paper, we solve a relaxed version of the problem, proposed by Knor et al.\ in 2018. For a given $k$, the problem is to find (infinitely many) graphs having exactly $k$ vertices such that the Wiener index remains the same after removing any of them. We call these vertices \emph{good} vertices and we show that there are infinitely many cactus graphs with exactly $k$ cycles of length at least 7 that contain exactly $2k$ good vertices and infinitely many cactus graphs with exactly $k$ cycles of length $c \in \{5,6\}$ that contain exactly $k$ good vertices. On the other hand, we prove that $G$ has no good vertex if the length of the longest cycle in $G$ is at most $4$.
翻译:\ emph{ Wiener 索引} 是化学图形理论中研究最广泛的参数之一 。 它被定义为在特定图形中所有未排序的顶点两对顶点之间最短路径长度的总和 。 1991 年,\ v{S}S}}olt\ 给 Wiener 索引带来了如下问题 : 查找所有图表, 这样它的 Wiener 索引在去除任何顶点后会得到保存 。 问题远没有解决, 到今天为止, 只有一张具有这种属性的最长图是已知的 : 11 顶点上的循环图。 在本文中, 我们解决了一个问题, Knor 和 al.\ 。 对于给定的美元, 问题在于找到( 绝对多) 的 美元 。 在删除任何顶点后, 维纳 指数仍然保持不变。 我们称之为这些顶点 = $ = g 的 。 。 我们显示, 在 $ $ $ $ 美元 美元 的 的 周期里没有 无限的 。