The input of the popular roommates problem consists of a graph $G = (V, E)$ and for each vertex $v\in V$, strict preferences over the neighbors of $v$. Matching $M$ is more popular than $M'$ if the number of vertices preferring $M$ to $M'$ is larger than the number of vertices preferring $M'$ to $M$. A matching $M$ is called popular if there is no matching $M'$ that is more popular than $M$. Only recently Faenza et al. and Gupta et al. resolved the long-standing open question on the complexity of deciding whether a popular matching exists in a popular roommates instance and showed that the problem is NP-complete. In this paper we identify a class of instances that admit a polynomial-time algorithm for the problem. We also test these theoretical findings on randomly generated instances to determine the existence probability of a popular matching in them.
翻译:热门室友问题的投入包括一张G=(V, E)$和每个顶点的V$+美元,对邻居的严格偏好是V$。如果偏向于美元对美元的脊椎数量大于偏向于美元对美元的脊椎数量,则匹配美元比美元问题的投入由一张G$=(V, E)和每个顶点的美元+瓦$+美元组成。如果顶点没有匹配美元比美元更受欢迎,则匹配美元是受欢迎的。直到最近Faenza等人和Gupta等人(Gupta等人)才解决了长期存在的关于确定流行室友中是否存在匹配的复杂性的公开问题,并表明问题已经解决了。在本文中,我们找出了接受问题多时算法的几类实例。我们还测试随机产生的这些理论结论,以确定在其中是否存在大众匹配的可能性。