Node Kayles is a well-known two-player impartial game on graphs: Given an undirected graph, each player alternately chooses a vertex not adjacent to previously chosen vertices, and a player who cannot choose a new vertex loses the game. The problem of deciding if the first player has a winning strategy in this game is known to be PSPACE-complete. There are a few studies on algorithmic aspects of this problem. In this paper, we consider the problem from the viewpoint of fixed-parameter tractability. We show that the problem is fixed-parameter tractable parameterized by the size of a minimum vertex cover or the modular-width of a given graph. Moreover, we give a polynomial kernelization with respect to neighborhood diversity.
翻译:节点 Kayles 是图表上众所周知的双玩家公正游戏 : 在未定向的图表中, 每个玩家轮流选择一个与先前选择的顶点不相邻的顶点, 而一个无法选择新顶点的玩家会失去游戏 。 确定第一个玩家在这个游戏中是否有胜出策略的问题已知是 PSPACE 已完成的 。 对这个问题的算法方面有一些研究 。 在本文中, 我们从固定参数可移动性的角度来考虑这个问题 。 我们显示, 问题是一个固定参数可移动参数的参数, 以最小的顶点覆盖大小或特定图形的模块形宽度为参数 。 此外, 我们给邻区多样性提供一个多角度的内核化 。