We initiate the theoretical study of Ext-TSP, a problem that originates in the area of profile-guided binary optimization. Given a graph $G=(V, E)$ with positive edge weights $w: E \rightarrow R^+$, and a non-increasing discount function $f(\cdot)$ such that $f(1) = 1$ and $f(i) = 0$ for $i > k$, for some parameter $k$ that is part of the problem definition. The problem is to sequence the vertices $V$ so as to maximize $\sum_{(u, v) \in E} f(|d_u - d_v|)\cdot w(u,v)$, where $d_v \in \{1, \ldots, |V| \}$ is the position of vertex~$v$ in the sequence. We show that \prob{Ext-TSP} is APX-hard to approximate in general and we give a $(k+1)$-approximation algorithm for general graphs and a PTAS for some sparse graph classes such as planar or treewidth-bounded graphs. Interestingly, the problem remains challenging even on very simple graph classes; indeed, there is no exact $n^{o(k)}$ time algorithm for trees unless the ETH fails. We complement this negative result with an exact $n^{O(k)}$ time algorithm for trees.
翻译:Ext- TSP 的理论研究是问题定义的一部分, 这个问题起源于配置- 制导二进制优化领域 。 问题在于如何排列 $V$ 的顶点, 以便最大限度地增加 $sum = (u, v) 美元, 以正边重量计: 美元 : E\\ rightrow R ⁇ $, 和不增加的折扣函数 $f( cdot) $f( 1) = 1美元 美元 和 $f( i) = 0美元, 以美元计于某参数 $@ k美元, 这是问题定义的一部分。 问题是, 问题在于如何排序 $V, 以便尽可能增加 $sum =( u, v) 。 f (d) d_ d_ v)\ cdotw w, 折d 折价 $f( v) 折价 $f( 1, ild) $(lock) $(x- transal- ligal) gramagrames) as a commagram (cal gradeal) max) protal- sals) ors. we we ex. we leshotal ex ex. ex ex. ex. ex legrogroglegals ex ex ex ex ex ex.