Let $W$ be a string of length $n$ over an alphabet $\Sigma$, $k$ be a positive integer, and $\mathcal{S}$ be a set of length-$k$ substrings of $W$. The ETFS problem asks us to construct a string $X_{\mathrm{ED}}$ such that: (i) no string of $\mathcal{S}$ occurs in $X_{\mathrm{ED}}$; (ii) the order of all other length-$k$ substrings over $\Sigma$ (and thus the frequency) is the same in $W$ and in $X_{\mathrm{ED}}$; and (iii) $X_{\mathrm{ED}}$ has minimal edit distance to $W$. When $W$ represents an individual's data and $\mathcal{S}$ represents a set of confidential patterns, the ETFS problem asks for transforming $W$ to preserve its privacy and its utility [Bernardini et al., ECML PKDD 2019]. ETFS can be solved in $\mathcal{O}(n^2k)$ time [Bernardini et al., CPM 2020]. The same paper shows that ETFS cannot be solved in $\mathcal{O}(n^{2-\delta})$ time, for any $\delta>0$, unless the Strong Exponential Time Hypothesis (SETH) is false. Our main results can be summarized as follows: (i) an $\mathcal{O}(n^2\log^2k)$-time algorithm to solve ETFS; and (ii) an $\mathcal{O}(n^2\log^2n)$-time algorithm to solve AETFS, a generalization of ETFS in which the elements of $\mathcal{S}$ can have arbitrary lengths. Our algorithms are thus optimal up to polylogarithmic factors, unless SETH fails. Beyond string sanitization, our techniques may inspire solutions to other problems related to regular expressions or context-free grammars.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
70+阅读 · 2022年6月30日
Arxiv
38+阅读 · 2021年8月31日
Anomalous Instance Detection in Deep Learning: A Survey
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员