Mixture-of-Experts (MoE) with sparse conditional computation has been proved an effective architecture for scaling attention-based models to more parameters with comparable computation cost. In this paper, we propose Sparse-MLP, scaling the recent MLP-Mixer model with sparse MoE layers, to achieve a more computation-efficient architecture. We replace a subset of dense MLP blocks in the MLP-Mixer model with Sparse blocks. In each Sparse block, we apply two stages of MoE layers: one with MLP experts mixing information within channels along image patch dimension, one with MLP experts mixing information within patches along the channel dimension. Besides, to reduce computational cost in routing and improve expert capacity, we design Re-represent layers in each Sparse block. These layers are to re-scale image representations by two simple but effective linear transformations. When pre-training on ImageNet-1k with MoCo v3 algorithm, our models can outperform dense MLP models by 2.5\% on ImageNet Top-1 accuracy with fewer parameters and computational cost. On small-scale downstream image classification tasks, i.e. Cifar10 and Cifar100, our Sparse-MLP can still achieve better performance than baselines.


翻译:在本文中,我们提议Sprassy-MLP, 将最近的MLP-Mixer模型与稀有的MOE层相匹配,以实现一个更高效的计算结构。我们用Sparse区块取代MLP-Mixer模型中密集的MLP区块。在Sparse区块中,我们应用了MOE层的两个阶段:一个是MLP专家,将基于关注的模型与图像补丁维度的频道内的信息混杂在一起,一个是MLP专家,在频道维度的补丁中将信息混杂在一起。此外,为了降低路由和增强专家能力方面的计算成本,我们设计了最新的MLP-Mixer模型,在每一个微小区块中,我们设计了重新展示层层。我们用两个简单有效的线性变形模型进行图像Net-1k 和MoCo v3算法的预培训时,我们的模型可以比图像网顶部1级和计算成本低的2.5°的MLP模型优于MU10级的图像网络下层图像和CSMA10级的基线任务,在小型、CMLMLS-S-S-S-C-C-C-C-C-C-C-C-CS-C-C-C-C-C-C-C-C-S-C-C-C-S-S-S-S-S-S-S-S-S-S-S-S-S-B-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年10月12日
【经典书】在线学习与在线凸优化,90页pdf
专知会员服务
58+阅读 · 2021年10月10日
2021机器学习研究风向是啥?MLP→CNN→Transformer→MLP!
专知会员服务
65+阅读 · 2021年5月23日
必须收藏!MIT-Gilbert老爷子《矩阵图解》,一张图看透矩阵
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
9+阅读 · 2021年5月17日
Arxiv
8+阅读 · 2020年6月15日
Neural Architecture Optimization
Arxiv
8+阅读 · 2018年9月5日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员