In Bayesian inverse problems, one aims at characterizing the posterior distribution of a set of unknowns, given indirect measurements. For non-linear/non-Gaussian problems, analytic solutions are seldom available: Sequential Monte Carlo samplers offer a powerful tool for approximating complex posteriors, by constructing an auxiliary sequence of densities that smoothly reaches the posterior. Often the posterior depends on a scalar hyper-parameter. In this work, we show that properly designed Sequential Monte Carlo (SMC) samplers naturally provide an approximation of the marginal likelihood associated with this hyper-parameter for free, i.e. at a negligible additional computational cost. The proposed method proceeds by constructing the auxiliary sequence of distributions in such a way that each of them can be interpreted as a posterior distribution corresponding to a different value of the hyper-parameter. This can be exploited to perform selection of the hyper-parameter in Empirical Bayes approaches, as well as averaging across values of the hyper-parameter according to some hyper-prior distribution in Fully Bayesian approaches. For FB approaches, the proposed method has the further benefit of allowing prior sensitivity analysis at a negligible computational cost. In addition, the proposed method exploits particles at all the (relevant) iterations, thus alleviating one of the known limitations of SMC samplers, i.e. the fact that all samples at intermediate iterations are typically discarded. We show numerical results for two distinct cases where the hyper-parameter affects only the likelihood: a toy example, where an SMC sampler is used to approximate the full posterior distribution; and a brain imaging example, where a Rao-Blackwellized SMC sampler is used to approximate the posterior distribution of a subset of parameters in a conditionally linear Gaussian model.


翻译:在巴伊斯反面问题中, 我们的目标是根据间接测量结果, 描述一组未知数的事后分布。 对于非线性/ 非Gaussian问题, 很少能找到解析性解决方案: 序列蒙特卡洛采样器为近似复杂后部提供了强大的工具, 其方法是建造一个相近密度的辅助序列, 顺利到达后部。 后部往往取决于一个卡路里超分参数 。 在这项工作中, 我们显示, 正确设计的所有代谢性蒙特卡洛( SMC) 采样器自然提供了与这个超直径参数相关的边际可能性近似值, 也就是说, 以微不足道的计算成本计算成本计算成本。 拟议的方法通过构建分层分配的辅助序列, 每组可以被解释为一个与超光速到达后部相匹配值相对对应的离子序列分布。 可以利用这个方法来进行以下的, : 离子流体的代数的代数的代谢性比值的模型, 以及超常数值的比值的比值接近率, 也就是某些超正位数的直径直径直径直径直径直径直径直径直径,,, 。

0
下载
关闭预览

相关内容

SMC:IEEE International Conference on Systems,Man, and Cybernetics Explanation:IEEE系统、人与控制论国际会议。 Publisher:IEEE。 SIT: https://dblp.uni-trier.de/db/conf/smc/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月22日
Arxiv
0+阅读 · 2023年2月22日
Arxiv
0+阅读 · 2023年2月21日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员