Polyhedral estimate is a generic efficiently computable nonlinear in observations routine for recovering unknown signal belonging to a given convex compact set from noisy observation of signal's linear image. Risk analysis and optimal design of polyhedral estimates may be addressed through efficient bounding of optimal values of optimization problems. Such problems are typically hard; yet, it was shown in Juditsky, Nemirovski 2019 that nearly minimax optimal ("up to logarithmic factors") estimates can be efficiently constructed when the signal set is an ellitope - a member of a wide family of convex and compact sets of special geometry (see, e.g., Juditsky, Nemirovski 2018). The subject of this paper is a new risk analysis for polyhedral estimate in the situation where the signal set is an intersection of an ellitope and an arbitrary polytope allowing for improved polyhedral estimate design in this situation.
翻译:综合估计是一种通用的高效非线性计算观测常规,用于从对信号线性图像的响亮观测中回收属于某一锥形紧凑装置的未知信号。风险分析和多面估计的最佳设计可以通过优化问题的最佳值的有效结合来解决。这类问题通常很困难;然而,Nemirovski 2019年的Juditsky显示,当信号组是一个私利特星时,即可有效地构建近乎最小型的估计数(“直至对数系数 ”, 当信号组是一个私利体时—— 是一个由一系列松式和紧凑的特别几何组组成的成员( 例如,见Juditsky, Nemirovski 2018年)。本文的主题是在信号组是埃利特相交汇的情形下对多面估计进行新的风险分析, 以及允许在这种情况下改进多面估计设计的一个任意的多面体。