Max-value entropy search (MES) is one of the state-of-the-art approaches in Bayesian optimization (BO). In this paper, we propose a novel variant of MES for constrained problems, called Constrained MES via Information lower BOund (CMES-IBO), that is based on a Monte Carlo (MC) estimator of a lower bound of a mutual information (MI). We first define the MI in which the max-value is defined so that it can incorporate uncertainty with respect to feasibility. Then, we derive a lower bound of the MI that guarantees non-negativity, while a constrained counterpart of conventional MES can be negative. We further provide theoretical analysis that assures the low-variability of our estimator which has never been investigated for any existing information-theoretic BO. Moreover, using the conditional MI, we extend CMES-IBO to the parallel setting while maintaining the desirable properties. We demonstrate the effectiveness of CMES-IBO by several benchmark functions and a real-world problem.
翻译:Max- valu entropy search (MES) 是巴伊西亚优化(BO)中最先进的方法之一。 在本文中,我们提出了一个针对受限问题的MES创新的变体,称为“通过信息下游(CMES-IBO)控制MES”,这个变体以蒙特卡洛(Monte Carlo)对互通信息下界的较低范围进行估计(MI)为基础。我们首先定义了最大值定义的MI,从而可以纳入可行性的不确定性。然后,我们从保证非渗透性的MI中获取了一个较低的约束范围,而常规MES的受限对应方可以是负面的。我们还提供了理论分析,以确保我们从未因任何现有信息理论性BO而接受过调查的天主的低可变性。 此外,我们利用有条件的MI,我们在维护理想特性的同时,将CMES- IBO扩大到平行环境。我们通过几个基准功能和现实世界问题展示了CMES- IBO的有效性。