Meaning of words constantly changes given the events in modern civilization. Large Language Models use word embeddings, which are often static and thus cannot cope with this semantic change. Thus,it is important to resolve ambiguity in word meanings. This paper is an effort in this direction, where we explore methods for word sense disambiguation for the EvoNLP shared task. We conduct rigorous ablations for two solutions to this problem. We see that an approach using time-aware language models helps this task. Furthermore, we explore possible future directions to this problem.
翻译:在现代文明中, 语言模式使用词嵌入, 通常都是静态的, 因而无法应对语义变化。 因此, 解决字义含义的模糊性很重要 。 本文是朝这个方向努力的, 我们探索了文字意识脱节的方法, 以便 EvoNLP 共同的任务 。 我们为解决这一问题的两种解决方案进行了严格的推理 。 我们发现, 使用有时间意识的语言模式的方法有助于这项任务 。 此外, 我们探索了这个问题可能的未来方向 。