The Burrows-Wheeler transform (BWT) is a permutation whose applications are prevalent in data compression and text indexing. The bijective BWT (BBWT) is a bijective variant of it. Although it is known that the BWT can be constructed in linear time for integer alphabets by using a linear time suffix array construction algorithm, it was up to now only conjectured that the BBWT can also be constructed in linear time. We confirm this conjecture by proposing a construction algorithm that is based on SAIS, improving the best known result of $O(n \lg n /\lg \lg n)$ time to linear.


翻译:Burrows- Wheeler 变换 (BWT) 是一种变异, 其应用在数据压缩和文本索引中很普遍。 双向 BWT (BBWT) 是它的两面变量。 虽然已知BWT可以通过使用线性时间后缀阵列构造算法, 以线性时间来构造整数字母的线性时间, 但目前只能推测BBWT 也可以以线性时间构造。 我们通过提出基于 SAIS 的构建算法来确认这一推测, 从而将 $O( n \ lg n /\ lg\ lg n ) 的时间改进到 $O( n \ lg n / lg\ lg n) 线性时间的已知最佳结果 。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
43+阅读 · 2020年9月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
ACL2020接受论文列表公布,571篇长文208篇短文
专知会员服务
66+阅读 · 2020年5月19日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月11日
Arxiv
0+阅读 · 2021年6月9日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
43+阅读 · 2020年9月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
ACL2020接受论文列表公布,571篇长文208篇短文
专知会员服务
66+阅读 · 2020年5月19日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员