Lifted Reed-Solomon and multiplicity codes are classes of codes, constructed from specific sets of $m$-variate polynomials. These codes allow for the design of high-rate codes that can recover every codeword or information symbol from many disjoint sets. Recently, the underlying approaches have been combined for the bi-variate case to construct lifted multiplicity codes, a generalization of lifted codes that can offer further rate improvements. We continue the study of these codes by first establishing new lower bounds on the rate of lifted Reed-Solomon codes for any number of variables $m$, which improve upon the known bounds for any $m\ge 4$. Next, we use these results to provide lower bounds on the rate and distance of lifted multiplicity codes obtained from polynomials in an arbitrary number of variables, which improve upon the known results for any $m\ge 3$. Specifically, we investigate a subcode of a lifted multiplicity code formed by the linear span of $m$-variate monomials whose restriction to an arbitrary line in $\mathbb{F}_q^m$ is equivalent to a low-degree univariate polynomial. We find the tight asymptotic behavior of the fraction of such monomials when the number of variables $m$ is fixed and the alphabet size $q=2^\ell$ is large. Using these results, we give a new explicit construction of batch codes utilizing lifted Reed-Solomon codes. For some parameter regimes, these codes have a better trade-off between parameters than previously known batch codes. Further, we show that lifted multiplicity codes have a better trade-off between redundancy and the number of disjoint recovering sets for every codeword or information symbol than previously known constructions, thereby providing the best known PIR codes for some parameter regimes. Additionally, we present a new local self-correction algorithm for lifted multiplicity codes.


翻译:Reed- Solomon 和多重代码是代码的类别。 这些代码允许设计高标准代码, 可以从许多脱节的数据集中回收每一种编码或信息符号。 最近, 双变换案例的基本方法已经组合起来, 以构建取消的多重代码, 对取消的代码进行常规化, 可以进一步改进费率。 我们继续研究这些代码, 首先为任何数量变量的立变 Reed- Solo 代码设定新的下限, 这些变量的立变标准将改进已知的 $- solmon 代码, 改进已知的 $mge 4美元 的标值。 接下来, 我们用这些结果来提供从多元变量中获取的已取消的多重代码的下限和距离, 在一个任意的变量中, 任何已知的 $ mge 3 的元值 。 具体地, 我们为任何已知的 美元 的线性规则的解变变数单单的解码的解码, 使我们在 $ m 美元 的任意线度 的 解变数 中 。 解变数 的 解变码 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
已删除
将门创投
9+阅读 · 2017年7月28日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
0+阅读 · 2021年11月25日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
已删除
将门创投
9+阅读 · 2017年7月28日
Top
微信扫码咨询专知VIP会员