In this paper, we present a novel method for integrating 3D LiDAR depth measurements into the existing ORB-SLAM3 by building upon the RGB-D mode. We propose and compare two methods of depth map generation: conventional computer vision methods, namely an inverse dilation operation, and a supervised deep learning-based approach. We integrate the former directly into the ORB-SLAM3 framework by adding a so-called RGB-L (LiDAR) mode that directly reads LiDAR point clouds. The proposed methods are evaluated on the KITTI Odometry dataset and compared to each other and the standard ORB-SLAM3 stereo method. We demonstrate that, depending on the environment, advantages in trajectory accuracy and robustness can be achieved. Furthermore, we demonstrate that the runtime of the ORB-SLAM3 algorithm can be reduced by more than 40 % compared to the stereo mode. The related code for the ORB-SLAM3 RGB-L mode will be available as open-source software under https://github.com/TUMFTM/ORB SLAM3 RGBL.
翻译:在本文中,我们介绍了一种新方法,将3D LiDAR深度测量方法纳入现有的ORB-SLAM3, 以RGB-D模式为基础。我们提出并比较了两种深度地图生成方法:传统的计算机视觉方法,即反推法和以深层次学习为基础的方法。我们通过增加一种直接读LIDAR点云的所谓 RGB-L(LiDAR) 模式,将前者直接纳入ORB-SAM3框架。在KITTI Odoricat数据集中,并相互比较,在标准ORB-SLAM3立体法中,对拟议方法进行了评估。我们证明,视环境而定,轨迹精确性和稳健性方面的好处是可以实现的。此外,我们证明,ORB-SLAM3算法的运行时间可以比立体模式减少40%以上。在https://github.com/TUMMTM/ORM3 RAM3 RGBL模式下,有关代码将作为开放源软件提供。