A long line of research on secure computation has confirmed that anything that can be computed, can be computed securely using a set of non-colluding parties. Indeed, this non-collusion assumption makes a number of problems solvable, as well as reduces overheads and bypasses computational hardness results, and it is pervasive in the privacy-preserving computation literature. However, it remains highly susceptible to covert, undetectable collusion among computing parties. This work stems from an observation that if the number of available computing parties is much higher than the number of parties required to perform a secure computation task, collusion attempts in privacy-preserving computations could be deterred. We focus on the prominent privacy-preserving computation task of multi-server $1$-private information retrieval (PIR) that inherently assumes no pair-wise collusion. For PIR application scenarios, such as those for blockchain light clients, where the available servers can be plentiful, a single server's deviating action is not tremendously beneficial to itself. We can make deviations undesired via small amounts of rewards and penalties, thus significantly {\em raising the bar} for collusion resistance. We design and implement a collusion mitigation mechanism on a public bulletin board with payment execution functions, considering only rational parties and no honest non-colluding servers. Privacy protection is offered for an extended period after the query executions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
84+阅读 · 2022年7月16日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员