Defining multivariate generalizations of the classical univariate ranks has been a long-standing open problem in statistics. Optimal transport has been shown to offer a solution in which multivariate ranks are obtained by transporting data points to a grid that approximates a uniform reference measure (Chernozhukov et al., 2017; Hallin, 2017; Hallin et al., 2021). We take up this new perspective to develop and study multivariate analogues of the sign covariance/quadrant statistic, Kendall's tau, and Spearman's rho. The resulting tests of multivariate independence are genuinely distribution-free, hence uniformly valid irrespective of the actual (absolutely continuous) distributions of the observations. Our results provide asymptotic distribution theory for these new test statistics, with asymptotic approximations to critical values to be used for testing independence as well as a power analysis of the resulting tests. This includes a multivariate elliptical Chernoff-Savage property, which guarantees that, under ellipticity, our nonparametric tests of independence enjoy an asymptotic relative efficiency of one or larger with respect to the classical Gaussian procedures.


翻译:在统计中,典型单面体层的多变量定义是一个长期未解决的开放问题。 最优化的运输证明提供了一种解决办法,通过将数据点传送到接近统一参照度的网格(Chernozhukov等人,2017年;Hallin,2017年;Hallin等人,2021年)。 我们从这个新角度发展和研究标志常态/夸度统计、Kenddall's Tau和Spearman's rho的多变量类比。 由此产生的多变量独立的测试是真正无分布的,因此,无论观测的实际(绝对连续)分布如何,都具有统一的有效性。 我们的结果为这些新的测试统计提供了无源分布理论, 与用于测试独立性的关键值的无源近似值以及对由此产生的测试进行能量分析。 这包括多变量的椭圆式 Chernoff-Savage 属性, 它保证在不留任性的情况下,我们以较大规模、不偏斜的相对性检验方式对高标准独立性程序进行更大的测试。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年3月14日
Arxiv
0+阅读 · 2023年3月14日
Arxiv
0+阅读 · 2023年3月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员