In this article, we study the test for independence of two random elements $X$ and $Y$ lying in an infinite dimensional space ${\cal{H}}$ (specifically, a real separable Hilbert space equipped with the inner product $\langle ., .\rangle_{\cal{H}}$). In the course of this study, a measure of association is proposed based on the sup-norm difference between the joint probability density function of the bivariate random vector $(\langle l_{1}, X \rangle_{\cal{H}}, \langle l_{2}, Y \rangle_{\cal{H}})$ and the product of marginal probability density functions of the random variables $\langle l_{1}, X \rangle_{\cal{H}}$ and $\langle l_{2}, Y \rangle_{\cal{H}}$, where $l_{1}\in{\cal{H}}$ and $l_{2}\in{\cal{H}}$ are two arbitrary elements. It is established that the proposed measure of association equals zero if and only if the random elements are independent. In order to carry out the test whether $X$ and $Y$ are independent or not, the sample version of the proposed measure of association is considered as the test statistic after appropriate normalization, and the asymptotic distributions of the test statistic under the null and the local alternatives are derived. The performance of the new test is investigated for simulated data sets and the practicability of the test is shown for three real data sets related to climatology, biological science and chemical science.
翻译:本文研究了两个随机元素 $X$ 和 $Y$ 在一个无限维空间 ${\cal{H}}$(具体地,一个带有内积 $\langle ., .\rangle_{\cal{H}}$ 的实可分 Hilbert 空间)中是否独立的检验问题。在研究过程中,提出了一种基于二元随机向量 $(\langle l_{1}, X \rangle_{\cal{H}}, \langle l_{2}, Y \rangle_{\cal{H}})$ 的联合概率密度函数和随机变量 $\langle l_{1}, X \rangle_{\cal{H}}$ 和 $\langle l_{2}, Y \rangle_{\cal{H}}$ 的边际概率密度函数之间的上确界差异的关联度量方法。证明了该关联度量方法等于零当且仅当随机元素相互独立。为了检验 $X$ 和 $Y$ 是否独立,考虑到了关联度量方法的样本值在适当归一化后作为检验统计量,并推导了在零假设和局部备择假设下的检验统计量的渐近分布。通过对模拟数据集的性能调查以及与气候学、生物科学和化学科学相关的三个实际数据集的实用性证明,展示了新的检验方法的有效性。