Satisfiability Modulo the Theory of Nonlinear Real Arithmetic, SMT(NRA) for short, concerns the satisfiability of polynomial formulas, which are quantifier-free Boolean combinations of polynomial equations and inequalities with integer coefficients and real variables. In this paper, we propose a local search algorithm for a special subclass of SMT(NRA), where all constraints are strict inequalities. An important fact is that, given a polynomial formula with $n$ variables, the zero level set of the polynomials in the formula decomposes the $n$-dimensional real space into finitely many components (cells) and every polynomial has constant sign in each cell. The key point of our algorithm is a new operation based on real root isolation, called cell-jump, which updates the current assignment along a given direction such that the assignment can `jump' from one cell to another. One cell-jump may adjust the values of several variables while traditional local search operations, such as flip for SAT and critical move for SMT(LIA), only change that of one variable. We also design a two-level operation selection to balance the success rate and efficiency. Furthermore, our algorithm can be easily generalized to a wider subclass of SMT(NRA) where polynomial equations linear with respect to some variable are allowed. Experiments show the algorithm is competitive with state-of-the-art SMT solvers, and performs particularly well on those formulas with high-degree polynomials.


翻译:满足性 Modulo 满足性 Mudulo 非线性 Real Real Airtic, SMT (NRA) 短期的理论涉及多元分子公式的可对称性, 多元分子公式是多元分子方程式的无量化的布尔式组合, 以及每个细胞的不平等与整数系数和真实变量的不均值。 在本文中, 我们为SMT( NRA) 的特殊子类提出了一个本地搜索算法, 其中所有限制都是严格的不平等。 一个重要事实是, 鉴于一个带有$美元变量的多元分子公式, 公式中多元分子的零水平将美元- 标准方程式的实际空间分解成有限的许多组件( 细胞), 并且每个细胞中每个多元分子方程式都有恒定的符号。 我们算的关键点是基于真实根隔离的新操作, 称为细胞跳键, 它将当前的任务与一个指定方向相更新, 以便任务能够从一个单元格“ 跳到另一个单元格。 一个多细胞- 基调可以调整数的变量值值值值值值值值值值值, 而传统的本地搜索操作, 比如, SAT 和精确度真实的直方值真实度实际的计算中, 将一些可变数级的运算算算算值运行中, 也显示为SMMTLILILILA 的精度的精度, 级的精度, 级的精度, 级的精度, 级的精度的精度的精度的精度, 显示的精度, 。</s>

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月5日
Arxiv
0+阅读 · 2023年5月4日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员