In this paper, we will develop a class of high order asymptotic preserving (AP) discontinuous Galerkin (DG) methods for nonlinear time-dependent gray radiative transfer equations (GRTEs). Inspired by the work \cite{Peng2020stability}, in which stability enhanced high order AP DG methods are proposed for linear transport equations, we propose to pernalize the nonlinear GRTEs under the micro-macro decomposition framework by adding a weighted linear diffusive term. In the diffusive limit, a hyperbolic, namely $\Delta t=\mathcal{O}(h)$ where $\Delta t$ and $h$ are the time step and mesh size respectively, instead of parabolic $\Delta t=\mathcal{O}(h^2)$ time step restriction is obtained, which is also free from the photon mean free path. The main new ingredient is that we further employ a Picard iteration with a predictor-corrector procedure, to decouple the resulting global nonlinear system to a linear system with local nonlinear algebraic equations from an outer iterative loop. Our scheme is shown to be asymptotic preserving and asymptotically accurate. Numerical tests for one and two spatial dimensional problems are performed to demonstrate that our scheme is of high order, effective and efficient.
翻译:在本文中,我们将为非线性时间依赖的灰色辐射传输方程式(GRTES)开发一个高排序无线性保存(AP)不连续的 Galerkin (DG) 方法。 受工作\ cite{ Peng2020stable} 启发, 其中为线性传输方程式建议了高排序的 AP DGS 方法, 我们提议在微- 宏观分解框架下将非线性GRTE 平整化, 添加一个加权线性分解术语。 在 diffive 限制中, 一个双曲线, 即 $\ Delta t ⁇ mathcal{O} (h) 双曲线, 其中$\ Delta t$ 和 $ $ h2020stable} 是时间和网格大小, 而不是 parblicolice $\ Delta t ⁇ pathcal{O} (h) (h) (h2), 我们提议在光线性自由路径中将非光线性平流化路径中, 主要的新的成分是进一步使用带有预测- 精确- 的双线性平流- 和直流式的平流式平面性平面性平面性平面的平面性平面性平面性平面性平面性平面性平面图, 以显示为显示的平面性平面性平面性平面性平面性平面性平面性平面图。